Species Richness, Functional Diversity And Relative Abundance Of Termites Under Different Land Use Regimes

“Best bet” Land-use Systems

Thematic reports

Impact of different land uses on biodiversity

An Intensive Biodiversity Baseline Study in Jambi Province,Central Sumatra, Indonesia

 

Unique id: 8

Source file: D:\Projects\ASB\ASB Country and Thematic reports - xml\Above ground biodiversity assessmet WG\C-Sec8-9.xml

 

Authors: D.T. Jones, F.X. Susilo, D.E. Bignell, H. Suryo

 

--------------------------------------------------------------------------

 

 

8.1       Introduction:

 

Indonesia contains more rain forest than any other country in the Asia-Pacific region, and is currently experiencing rapid changes in land use, although exact figures are difficult to obtain. It has been estimated that Indonesia lost between 0.5% to 0.8% of its total closed forest cover per year during the first half of the 1980s (Groombridge, 1992).  The equatorial island of Sumatra is the third largest island in the Indonesian archipelago.  The island's lowland forests have been heavily logged and large areas are seriously degraded (Riswan & Hartanti, 1995). Sumatra has a relatively high and rising population density and, under growing socioeconomic pressure, large areas of forest have been lost to commercial logging, permanent or shifting subsistence agriculture, or cleared for plantations and transmigration schemes (Whitten et al., 1984).  By 1991, Collins et al. estimated about 49% of Sumatra's original forest cover remained, although very little was pristine.  In Jambi Province, Central Sumatra, during a six-year period up to 1992, about 8% of primary forest was converted to secondary forest, another 5% was converted to agricultural land, while about 0.3% became grassland (Murdiyarso & Wasrin, 1995).

 

Much of Sumatra is now a mosaic of different land-use types. Fragments of primary forest remain within large areas of impoverished logged-over and secondary forest, while various silvicultural systems, including vast industrial plantations of oil palm, rubber and fast-growing soft wood tree species, dominate the landscape.  Indigenous agroforestry systems vary from cash-crop monocultures to complex multispecies and multi-storey gardens (Aumeeruddy & Sansonnens, 1994). The 'jungle rubber' system is a man-made diverse agroforestry system with a high concentration of rubber trees, which has a forest-like structure when in its mature phase and provides fruits, fuelwood and timber, as well as an income from latex (Gouyon et al., 1993).  Intensively farmed and burnt land can be exhausted of nutrients and often reduced to alang-alang (Imperatacylindrica) grassland. Some transmigration farming systems set up on former forested lands have been shown to be unsustainable with the current level of resourcing (Holden et al., 1995).

 

Within the context of sustainable agricultural production under conditions of rapid land-use change, declining forest cover, loss of biodiversity and an increasing human population, research should be focused on those groups of organisms that contribute directly to plant productivity and their response to changes in land use. The importance of invertebrate macrofauna to the promotion of tropical soil fertility has been stressed in recent reviews (Fragoso et al., 1993; Lavelle et al., 1994; Garnier-Sillam & Harry, 1995; Nash & Whitford, 1995; Brussaard & Jumas, 1996; Wood, 1996).  The distribution, protection and stabilization of organic matter, the genesis of soil structure, humification, the release of immobilized N and P, the improvement of drainage and aeration, and the increase in exchangeable cations have all been demonstrated in soils modified by termites and earthworms (Lavelle et al., 1997).  In African systems, forest clearance depletes termite abundance and diversity (Wood et al. 1982; Eggleton et al.,1995; 1996) but similar studies are not yet available from Asia.

 

Termites are a key functional group of animals in the tropics and can achieve very high populations.  For example, in the forests of southern Cameroon, termites are the most numerous of all insect groups (Watt et al., 1997) with abundances of up to 10,000 m-2, and live biomasses of 100 g m-2  (Eggleton et al., 1996). As the dominant arthropod detritivores, termites are important in decomposition processes (Wood & Sands, 1978; Collins, 1983) and thereby play a central role as mediators of nutrient and carbon fluxes (Jones, 1990; Abbadie et al., 1992; Lawton et al., 1996; Bignell et al., 1997).  However, being social insects, termites tend to concentrate around colony centres.  These centres are often scattered unevenly through the habitat (for example, see Baroni-Urbani et al., 1978; Gontijo & Domingos, 1991), leading to extreme heterogeneity of individuals and populations.

 

Given the ecological importance of termites, there is a need to characterize termite assemblage structure within and between sites.  As a consequence of their highly patchy spatial distribution, combined with the many and varied field sampling regimes adopted by previous researchers, it has not been possible to use the existing data to make reliable direct comparisons of termite diversity and abundance between sites (see Eggleton & Bignell, 1995).  As Sutton & Collins (1991) emphasised, it is necessary to develop and test standardised sampling methods that can be applied easily throughout the tropics.  To this end, a standardised transect sampling method designed to measure termite species richness and functional diversity in tropical forests has been developed. The protocol has been used in Cameroon (Eggleton et al, 1995), Thailand (Davies, 1997), Peninsular Malaysia (Jones & Brendell, in press) and two sites in Sabah; Maliau Basin (Jones et al., in press) and Danum Valley (Eggleton et al., in press).

 

8.2       Aims:

 

To assess the termite assemblage under different land uses. The first aim is to measure species richness, functional diversity and the relative abundance of termites under seven different land-use regimes in JambiProvince, central Sumatra. The seven land uses are listed in Section 8.4.  By using a standardised sampling protocol, the results from each site can be directly compared, both within this study and with other locations where the transect method has been employed.

 

The responses of termites to land-use changes. If the history of exploitation at each of the Jambi study sites is known, it may be possible to arrange the sites along a 'land-use intensification gradient' or into one or more 'land-use sequences'. By assuming that all the Jambi sites were originally forested and had similar termite assemblages, it will be possible to hypothesise about the response of termites to changes in land use.  This assumes the primary assumption is correct.

 

The search for correlates between termites and other organisms. The multidisciplinary approach adopted in this project is rare in ecological field studies. In all, seven groups of organisms have been studied in the same sites in JambiProvince. These groups are: vascular plants, mammals, birds, termites, butterflies, soil macrofauna (including ants and earthworms), and selected canopy arthropod groups.  The third aim is, therefore, to investigate and identify possible correlates between termites and the other target taxa studied in this project.

 

8.3       Personnel:

 

Principal Investigator:   

Dr D.T. Jones (termite ecologist and taxonomist) - Biodiversity Division Entomology Department

The NaturalHistoryMuseum.

 

Assisted by:        

 

Dr David Bignell (termite physiologist), Tropical Biology & Conservation Unit, University Malaysia Sabah.

Dr F.X. Susilo (entomologist) - Jurusan Proteksi Tanaman, Fakultas Pertanian, Universitas Lampung

Dr Suryo Hardiwibowo (biologist) - Gadjah Mada Universitas, Yogyakarta, Indonesia

 

8.4       Methods:

 

Seven sites in JambiProvince were studied during November 1997, each site representing a distinct land-use type. The seven land-use types and the dates sampled are listed below. One transect was run in each land-use type as follows:

 

 

 

                       Land use type                          Site code         Date sampled

 

 

      1.  Paraserianthes plantation          BS 6               19 + 20 Nov. 1997

      2.  Primary forest                            BS 1               21 + 22 Nov. 1997

      3.  Logged-over forest                    BS 3               22 + 23 Nov. 1997

      4.  Imperata grassland                    BS 12                                  24 Nov. 1997

      5.  Cassava garden                         BS 14             24 + 25 Nov. 1997

      6.  Jungle rubber                             BS 10                          26 + 27 Nov. 1997

      7.  Rubber plantation                       BS 8               27 + 28 Nov. 1997

 

 

            The standardized transect sampling method:

 

All transects were co-located with a 40x5m strip transect used to sample vegetation and for other multidisciplinary studies. Each termite transect was 100 m long and 2 m wide, divided into 20 contiguous sections (each 5 m x 2 m), and numbered sequentially.  Each section was sampled by two people for 30 minutes (a total of one hour of collecting per section).  In order to standardise sampling effort, the trained collectors worked steadily and continuously during the 30 minute collecting period.  In each section the collectors searched the following microhabitats which are common sites for termites: surface soil to 5 cm depth; accumulations of litter and humus at the base of trees; the inside of dead logs, tree stumps, branches and twigs; the soil within and beneath very rotten logs; all subterranean nests, mounds, carton sheeting and runways on vegetation, and arboreal nests up to a height of 2 m above-ground level.

 

The protocol was designed to offer a flexible approach to the sampling, whereby the collectors used their experience and judgement to search for, locate and sample as many species of termite in each section as time allowed.  Specimens from each termite population encountered were sampled. All castes were collected if present, but priority was given to finding soldiers and workers. Termites were placed in vials labelled with the section number and filled with 80%ethanol.

 

In structurally complex habitats, i.e. with a relatively large above-ground biomass (such as forests and plantation systems), the collectors spend approximately half their collecting time searching the above-ground microhabitats described above. The remaining 15 minutes were used searching for termites in the  soil.  However, in the case of the Imperata grassland (BS 12) and the Cassava garden (BS 14) there was relatively little above-ground biomass. Within the transects in both systems there were no trees and virtually no dead wood or leaf litter. Therefore, in these land-use types (Imperata grassland and the Cassava garden) the collectors sampled only for 15 minutes (total collecting effort = 30 minutes) in each section. This procedure ensured that equal effort was given to searching for termites in the soil in each transect.

 

The transect sampling method provides a semi-quantitative measure of the relative abundance of termites based on the number of encounters or 'hits' with each species in a transect.  A hit is defined as the recorded presence of a species in one section.  Therefore, if a species is present in every section of a transect it will have a relative abundance score of 20.  The number of hits per transect can then be used as an indicator of the relative abundance of termites occurring within a transect, as well as between transects. It gives no measure of the absolute abundance per unit area.

 

8.4.2    Identification of material:

 

During the field trip, great effort was taken to examine as much of the material as time allowed.  This was made possible due to the microscope and light source provided by David Bignell.  In the evenings, many hours were spent making provisional identifications.  All samples with soldiers were identified to genus, and then morphospecies numbers were allocated.  A working reference collection was maintained so that material from all transects could be cross-referenced and the morphospecies designations applied consistently.  Many vials contained two or more species, and some of these were separated where time and accuracy allowed.  Two groups of samples were not identified.  The first were samples with workers (i.e. no soldier specimens collected).  Workers are difficult and time consuming to identify as the mandibles must be dissected, and the structure of the gut must be examined, sometimes necessitating the removal and mounting of the enteric valve.  The second group were genera in the Subulitermes complex. These are small termites whose taxonomy is ill-defined and that are difficult to identify.

 

It must be stressed that the results given in this report are based solely on the provisional identifications made during the field trip. At the Natural History Museum every sample will be examined again, and accurate species-level identifications will be made. By comparison with the museum's extensive reference collection (which contains approximately 16000 vials of identified material, plus about 1000 vials of type material), it will be possible to put specific names on alarge proportion of the Jambi collection.  It is estimated that the identification work at the museum should take about 4 to 5 weeks [note: completed July 1998. eds. See Annex III, Table 11)

 

Functional groups:

Genera were assigned to one of five functional groups based on known feeding habits (see Collins, 1984; Eggleton et al., 1996; Jones et al., in press; Eggleton et al., submitted), the shape of the molar plates of the worker mandibles (Deligne, 1966), and worker gut content analyses (Sleaford et al., 1996).  The functional groups are;

 

Soil-feeding: termites that feed on humus and mineral soil.

Wood-feeding: termites that feed on dead wood.

Soil/wood interface-feeding: termites that feed on extremely decayed wood that has lost its structure and become soil-like.

Litter-feeding: termites that feed exclusively on leaf-litter and small items of woody trash.

Epiphyte-feeding: Hospitalitermes is known to feed on lichens and other free living non-vascular plants which they graze from the surface of tree trunks (Collins, 1979; Jones & Gathorne-Hardy, 1995).

 

8.5       Preliminary results:

 

8.5.1    Species richness:

 

The preliminary sorting carried out during the Jambi field work produced a conservative total of 23 genera and 48 morphospecies for all seven land-use types (Annex III, Table 11).  However, in addition to these taxa, the Subulitermes complex and many vials of workers await examination.  The senior author speculates that these vials will possibly contain several genera plus between 3 to 10 species which can be added to the checklist.  Members of the Apicotermitinae subfamily are rare inSoutheast Asia but have been collected in transects run in Sabah (Eggleton et al., in press) and Peninsular Malaysia (Jones & Brendell, in press).  Within this subfamily the soldiers are absent or rare, however, specimens may be present in the vials of workers from Jambi.

 

Table 8.1 gives the list of morphospecies currently recorded from each transect.  The preliminary identifications clearly show that the primary forest site is the most species rich, while the Imperata grassland and the Cassava garden sites are the most depauperate. The logged-over forest site and the agroforestry systems all have intermediate levels of species richness. Figure 8.1 displays the taxonomic composition of each transect sample. The Termitinae are the dominant subfamily in sites except the Paraserianthes plantation site and the Cassava garden system.

 

8.5.2    Relative abundance:

 

The number of hits (the presence of a species in a section) is recorded in Table 8.1. Termites are most abundant in the primary forest site and least abundant in the Cassava garden. The termites collected in this study fall into four feeding groups. Wood-feeding and soil-feeding species are relatively abundant in most transects, while epiphyte-feeders are rare and interface-feeders (those species that feed on extremely decayed soil-like wood) vary considerably in abundance among transects. Figure 8.2 displays the relative abundance of termites in each functional group.  Of notable interest is the high relative abundance of soil-feeders in the jungle rubber system, and their absence from the Paraserianthes plantation. Grass-harvesting species and taxa that feed exclusively on leaf-litter appear to be absent from the study sites.

 

8.6       Discussion:

 

It must be stressed that the results given in the table and figures are based on provisional identifications.  Table 8.1 also lists the number of vials containing specimens of the Subulitermes complex and workers which still await examination, and suggest the possible extent of extra species and hits that may be added to each transect. While we are certain that the final results for most of the transects will vary in species richness and relative abundance from those presented here, the senior author is confident that the overall patterns are likely to be similar to those already evident in the preliminary results.

 

Our knowledge of the termite fauna of Sumatra is very limited and based on casual sampling (Holmgren, 1913-14; Oshima, 1923, John, 1925; Amir, 1975).  Tho (1992) lists a total of 89 species from Sumatra, but this is certainly an underestimate. The development of comprehensive and rigorous sampling techniques produces much higher local species richness estimates than those given by casual collecting methods. For example, after extensive and widespread collecting, Thapa (1981) lists 103 species from Sabah. However, recent research in one area (DanumValley, South-east Sabah) using transects and labour-intensive sampling regimes produced a checklist of 93 species (Eggleton et al., in press; Homathevi et al., in prep.). Therefore, it is highly likely our studies at Jambi will increase the Sumatran species list.

 

The transect method has been tested against known local termite faunas and shown to produce representative samples that are not significantly different in taxonomic or functional composition from their local assemblage (Jones & Eggleton, in prep.). The highest species richness found in Southeast Asian forests using the transect method is 33 species at DanumValley (Eggleton et al., in press).  There is a reasonable possibility that the Jambi primary forest transect will exceed the DanumValley species richness. Changes in the taxonomic and functional composition of the termite assemblages across the seven land-use types will be discussed in detail when the final data set is produced.

 

The preliminary results show a decline in termites species richness (Fig. 8.1) and relative abundance (Fig. 8.2) across the seven land-use types.  Casual observations of the botanical features at each site by the authors suggested a positive relationship between termite species richness and physical complexity.  It has been speculated that the degree of canopy closure appears to have a strong influence on termite diversity (Eggleton et al., 1995, 1996).  Preliminary results from Jambi show a very high correlation between termite relative abundance and the recorded basal area of woody plants (r2 = 0.95; Gillison, pers. comm.; see also Annex II, Figure 1c). We await the dissemination of the vascular plant data to investigate whether there are significant correlates between the termite assemblages and the plant communities.

 

The efficiency of the transect method, based on the number of species collected per unit effort (number of days for one trained person to collect and identify samples) has already been calculated (Jones & Eggleton, in prep.). One transect takes one trained collector four days to complete.  The material from one primary forest transect at DanumValley takes one taxonomist about 10 days to sort and identify to species.  Given the known levels of species richness and taxonomic difficulty associated with the termite fauna of primary forest in Southeast Asia, we can estimate that 14 days' effort is required for one trained person to run one transect and identify the material.  If we make the assumption that the Jambi primary forest transect will have a final richness of 33 species, this equates to an approximate cost of 2.4 identified species per person per day.

 

            Conclusions:

 

With the completion of seven termite transects and the preliminary sorting, the field-based phase of the Jambi project can be considered a great success.  When all the museum-based identification work is complete, the top set of material will be deposited at the BogorMuseum.  A smaller reference collection will be retained by the Natural History Museum. The results of the termite transect study in Jambi will be written-up for publication in an international peer-reviewed journal. This paper will address the first two aims stated in this report, and it will also address partially the third aim (correlates between the termite assemblage and the vascular plant community). This latter line of research is perhaps the most exciting and important theme to be investigated in the Jambi termite project.  For the first time it will be possible to relate termite diversity to measured plant parameters. The full set of final results will be sent to Dr Andy Gillison and CIFOR, and it is hoped that at least one joint paper will be produced which investigates correlates between all the groups of organisms studied at Jambi, and the potential usefulness of these groups as target taxa in rapid biodiversity assessment.

Acknowledgements

 

The authors would like to thank Dr Andy Gillison and Ir Nining Liswanti for organising the field work in Jambi and all the travel arrangements.  In addition, we are grateful to the logistical support provided by CIFOR and ICRAF while in Indonesia.

 

8.8       References:

 

Abbadie, L., Lepage, M. & Le Roux, X. (1992). Soil fauna at the forest-savanna boundary: role of termite mounds in nutrient cycling. In: Nature and dynamics of forest-savanna boundaries (Furley, P.A., Proctor, J. & Ratter, J.A. Eds.). Chapman & Hall, London, pp. 473-484.

Amir, M. (1975). An additional species of Odontotermes Holmgren from Lampung, Sumatra (Isoptera, Termitidae). Treubia, 28: 143-151.

Aumeeruddy, Y. & Sansonnens, B. (1994). Shifting from simple to complex agroforestry systems - an example for buffer zone management from Kerinci (Sumatra, Indonesia). Agroforestry systems,28: 113-141.

Baroni-Urbani, C., Josens, G. & Peakin, G.J. (1978). Empirical data and demographic parameters. In: Production ecology of ants and termites (Brian, M.V. Ed.). CambridgeUniversity Press, Cambridge, UK, pp. 5-44.

Bignell, D.E., Eggleton, P., Nunes, L. & Thomas, K.L. (1997). Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In: A.D. Watt, N.E. Stork and M.D. & Hunter, eds.. Forests and Insects , pp. 109-134 (Chapman and Hall, London,).

Brussaard, L. & Jumas, N.G. (1996). Organisms and humus in soils. In: A. Piccolo, ed., Humic substances in terrestrial ecosystems , pp. 329-359. Elsevier, Amsterdam.

Collins, N.M. (1979). Observations on the foraging activity of Hospitalitermes umbrinus (Haviland), (Isoptera: Termitidae) in the GunungMuluNational Park, Sarawak. Ecological Entomology, 4: 231-238.

Collins, N.M. (1983). Termite populations and their role in litter removal in Malaysian rain forests. In: S.L. Sutton, T.C. Whitmore, and A.C. Chadwick, eds. Tropical rain forest: Ecology and management , pp. 311-325. Blackwell Scientific Publications, Oxford.

Collins, N.M. (1984). The termites (Isoptera) of the GunungMuluNational Park, with a key to the genera known from Sarawak. SarawakMuseum Journal,30: 65- 87.

Collins, N.M., Sayer, J.A. & Whitmore, T.C., editors (1991). The conservation atlas of tropical forests: Asia and the Pacific, Macmillan Press, London.

Davies, R.G. (1997). Termite species richness in fire-prone and fire-protected dry deciduous dipterocarp forest in DoiSuthep-PuiNational Park, northern Thailand. Journal of Tropical Ecology, 13: 153-160.

Deligne, J. (1966). Caracteres adaptifs au regime alimetaire dans la mandibule des termites (Insectes Isopteres). Compte Rendu d'Academie des Sciences.Paris, 263: 1323-1325.

Eggleton, P. & Bignell, D.E. (1995). Monitoring the response of tropical insects to changes in the environment: Troubles with termites. In: R. Harrington and N.E. Stork, eds. Insects in a changing environment, pp. 473-497. Academic Press, London.

Eggleton, P., Bignell, D.E., Sands, W.A., Waite, B., Wood, T.G. & Lawton, J.H. (1995). The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Journal ofTropical Ecology,11: 85-98.

Eggleton, P., Bignell, D.E., Sands, W.A., Mawdsley, N.A., Lawton, J.H., Wood, T.G.&Bignell, N.C. (1996). The diversity, abundance, and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philosophical Transactions of the Royal Society of London,351: 51-68.

Eggleton, P., Homathevi, R., Jeeva, D., Jones, D.T., Davies, R.G. & M. Maryati (in press). The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica.

Fragoso, B.I., Gonzales, C., Arteaga, C. & Patron, J.C. (1993). Relationship between earthworms and soil organic matter levels in natural and managed ecosystems in the Mexico tropics. In: K. Mulongoy and R. Mecchx eds. Soil organic matter dynamics and sustainability of tropical agriculture. pp. 231-240.John Wiley & Sons, Chichester, UK.

Garnier-Sillam, E. & Harry, M. (1995). Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux, 42: 167-185.

Gontijo, T.A. & Domingos, D.J. (1991). Guild distribution of some termites from Cerrado vegetation in south-east Brazil. Journal of Tropical Ecology,7: 523-529.

Gouyon, A., DeForesta, H. & Levang, P. (1993). Does jungle rubber deserve its name? An analysis of rubber agroforestry systems in south east Sumatra. Agroforestry systems, 22: 181-206.

Groombridge, B., editor (1992). Global biodiversity.  Status of the Earth's living

            resources, Chapman & Hall, London, 585 pp.

Holden, S., Hvoslef, H. & Simanjuntak, R. (1995). Transmigration settlements in Seberida, Sumatra - deterioration of farming systems in a rainforest environment. Agricultural Systems, 49: 237-258.

Holmgren, N. (1913-14). Wissenschaftliche Ergebnisse einer Forschungsreise nach Ostindien, ausgefuhrt im Auftrage der Kgl. Preuss. Akademie der Wissenschaften zu Berlin von H. v. Buttel-Reepen. 3. Termiten aus Sumatra, Java, Malacca und Ceylon. Zoologische Jahrbucher, Abteilungen Systematik, 36: 229-290.

John, O. (1925). Termiten von Ceylon, der Malayischen Halbinsal, Sumatra, Java und den Aru-Inseln. Treubia,6: 360-419.

Jones, D.T. & Brendell, M.J.D. (in press). The termite (Insecta: Isoptera) fauna of Pasoh Forest Reserve, Malaysia. Raffles Bulletin of Zoology.

Jones, D.T. & Gathorne-Hardy, F. (1995). Foraging activity of the processional termite Hospitalitermes hospitalis (Termitidae: Nasutitermitinae) in the rain forest of  Brunei, north-west Borneo. Insectes Sociaux,42: 359-369.

Jones, D. T., J. Tan & Y. Bakhtiar (in press).  The termites (Insecta:Isoptera) of the MaliauBasin, Sabah. In: M. Maryati, S. Waidi, A. Anton, M. N. Dalimin and A. H. Ahmad eds., Monograph of the Maliau Basin Scientific Expedition 12-26 May, 1996. Biological Monographs No. 1.  Universiti Malaysia Sabah, Kota Kinabalu.

Jones, J.A. (1990). Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. Journal of Tropical Ecology, 6: 291-305.

Lavelle, P., Lattaud, C., Trigo, D, Barois, L. (1994) Mutualism  and biodiversity in soils. Plant and Soil170, 23-33.

Lavelle, P., Bignell, D.E. and Lepage, M. (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology33, 159-193.

Lawton, J.H., Bignell, D.E., Bloemers, G.F., Eggleton, P.&Hodda, M.E. (1996). Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biodiversity and Conservation, 5: 261-273.

Murdiyarso, D. & Wasrin, U.R. (1995). Estimating land-use change and carbon release from tropical forest conversion using remote-sensing techniques. Journal of Biogeography, 22: 715-721.

Nash, M.H. & Whitford, W.G. (1995). Subterranean termites: regulators of soil organic matter in the ChihuahuanDesert. Biology and Fertility of Soils, 19: 15-18.

Oshima, M. (1923). Fauna simalurensis Termitidae. Capita Zoologica, 2 (3): 1-22.

Riswan, S. & Hartanti, L. (1995). Human impact on tropical forest dynamics. Vegetatio, 121: 41-52.

Sleaford, F., Bignell, D.E. & Eggleton, P. (1996). A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecological Entomology, 21: 279-288.

Sutton, S.L.&Collins, N.M. (1991). Insects and tropical forest conservation. In: N.M. Collins and J.A. Thomas eds. pp. 405-425. The conservation of insects and their habitats.  Academic Press, London.

Thapa, R.S. (1981). Termites of Sabah. SabahForest Record, 12: 1-374.

Tho, Y.P. (1992). Termites of Peninsular Malaysia. (Kirton, L.G. Ed.). MalayanForest Records, No. 36: 224 pp. Forest Research Institute Malaysia, Kepong.

Watt, A.D., Stork, N.E., Eggleton, P., Srivastava, D., Bolton, B., Larsen, T.B., Brendell, M.J.D. & Bignell, D.E. (1997). Impact of forest loss and regeneration on insect abundance and diversity. In: A.D. Watt and M.D. Hunter eds. pp. 273-286. Forests and Insects.  Chapman and Hall, London.

Whitten, A.J., Damanik, S.J., Anwar, J. & Hisyam, N. (1984). The Ecology of Sumatra, GadjahMadaUniversity Press, Yogyakarta, Indonesia.

Wood, T.G. & Sands, W.A. (1978). The role of termites in ecosystems. In: M.V. Brian, ed. Production ecology of ants and termites, pp. 245-292. CambridgeUniversity Press, Cambridge.

Wood, T.G., Johnson, R.A., Bacchus, S., Shittu, M.O. & Anderson, J.M. (1982). Abundance and distribution of termites (Isoptera) in a riparian forest in the southern Guinea savanna zone of Nigeria. Biotropica, 14: 25-39.

Wood, T.G. (1996) The agricultural importance of termites in the tropics. Agricultural Zoology Reviews7, 117-155.


Table 8.1Species checklist of termites collected from the seven land-use types in JambiProvince, central Sumatra, in November 1997.

Termites were collected using the standardised transect sampling protocol.  One transect was run in each land-use type.  Figures are the relative abundance of each species, based on the number of 'hits' of each species in a transect (the presence of a species in one section represents one hit).  Functional group are: W = wood-feeders, I = soil/wood interface-feeders, S = soil-feeders, E = epiphyte-feeders

                                                                                                  Primary             Logged            Jungle                   Rubber           Parase-Imperata                   Cassava

Species                                                             Functional              forest                forest                     rubber                   pltn.              ianthes                grassland          garden

                                                                              group                    (BS 1)                (BS 3)              (BS 10)                    (BS 8)             (BS 6)                    (BS 12)               (BS 14)

KALOTERMITIDAE

Glyptotermes sp.                                                      W                            -                           -                           -                           1                         -                      -                                -

RHINOTERMITIDAE

Coptotermes curvignathus                                       W                            1                          1                          1                           3                         1                     -                                -

Coptotermes sepangensis                                         W                            -                           -                           -                           -                          4                     -                                -

Coptotermes borneensis                                           W                            -                           -                           -                           -                          1                     -                                -

Heterotermes tenuior                                                W                            1                          -                           -                           -                          -                      -                                -

Parrhinotermes near minor                                      W                            -                           -                           1                           -                          -                      -                                -

Parrhinotermes near sp. C                                       W                            -                           1                          -                           -                          -                      -                                -

Schedorhinotermes javanicus                                   W                            1                          -                           7                           -                          7                     -                                -

Schedorhinotermes sarawakensis                            W                            1                          -                           -                           -                          9                     -                                -

Schedorhinotermes tarakanensis                             W                            6                          7                          4                           1                         -                      -                                -

Schedorhinotermes sp.                                             W                            -                           -                          -                           2                         -                      -                                -

                                                                                                  Primary             Logged            Jungle                   Rubber           Parase-Imperata                   Cassava

Species                                                             Functional              forest                forest                     rubber                   pltn.              ianthes                grassland          garden

                                                                              group                    (BS 1)                (BS 3)                  (BS 10)                (BS 8)                (BS 6)                    (BS 12)               (BS 14)

TERMITIDAE

Macrotermitinae

Macrotermes gilvus                                                  W                            -                           -                           -                           -                          -                 -                               1

Macrotermes sp. 1                                                   W                            1                          -                           -                           -                          -                 -                               -

Odontotermes denticulatus                                       W                            -                           -                           5                          -                          -                 -                               -

Odontotermes sarawakensis                                    W                            10                        9                          -                           -                          -                 -                               -

Ancistrotermes pakistanicus                                     W                            -                           -                           3                           -                          -                 -                               -

Termitinae

Prohamitermes mirabilis                                          I                               3                          7                          -                           6                         4                -                               -

Labritermes buttelreepeni                                         S                              -                           -                           1                           2                         -                 -                               -

Globitermes globosus                                               W                            8                          4                          1                           -                          -                 4                              -

Microcerotermes serrula                                          W                            3                          7                          -                           1                         -                 -                               -

Microcerotermes near havilandi                               W                            -                           1                          -                           -                          -                 -                               -

Termes comis                                                           I                               4                          1                          -                           -                          1                -                               -

Termes propinquus                                                  I                               3                          -                           -                           12                       1                -

Homallotermes eleanorae                                        I                               1                          -                           -                           3                         -                 -                               -

Homallotermes foraminifer                                      I                               1                          4                          -                           -                          -                 -                               -

Mirocapritermes connectens                                    S                              -                           2                          10                        -                          -                 -                               -

Malaysiocapritermes prosetiger                               S                              3                          2                          10                         -                          -                 -                               -

Procapritermes neosetiger                                       S                              -                           -                           -                           6                         -                 -                               -


Table 8.1Species checklist of termites collected from the seven land-use types in JambiProvince, central Sumatra, in November 1997.

 

                                                                                                  Primary              Logged            Jungle                  Rubber           Parase-Imperata                   Cassava

Species                                                             Functional              forest                forest                     rubber                   pltn.              ianthes                grassland          garden

                                                                              group                    (BS 1)                (BS 3)                (BS 10)                  (BS 8)             (BS 6)                    (BS 12)               (BS 14)

 

Procapritermes sandakanensis                                                S                              -                               -                               3                              -               -        -                               -

Procapritermes setiger                                             S                              8                          6                          2                           -                          -                 -                               -

Procapritermes near minutus                                   S                              4                          -                           1                           -                          -                 -                               -

Procapritermes sp. A                                               S                              -                           -                           5                           -                          -                 -                               -

Coxocapritermes sp. A                                            S                              6                          1                          -                           -                          -                 -                               -

Coxocapritermes sp. C                                             S                              2                          3                          -                           -                          -                 -                               -

Coxocapritermes sp. D                                            S                              1                          3                          2                           -                          -                 -                               -

Kemneritermes sp. A                                               S                              4                          1                          -                           -                          -                 -                               -

Pericapritermes dolichocephalus                             S                              -                           -                           6                           -                          -                 -                               -

Pericapritermes nitobei                                            S                              1                          -                           2                           -                          -                 -                               -

Pericapritermes semarangi                                      S                              2                          -                           -                           -                          -                 5                              -

Dicuspiditermes nemorosus                                     S                              11                        18                        12                         12                       -                 -                               -

Dicuspiditermessantschii                                          S                              6                          5                          1                           2                         2                -                               -

Nasutitermitinae

Havilanditermes proatripennis                                                W                            -                               -                               -                              6              -        -                               -

Nasutitermes havilandi                                             W                            1                          -                           2                           -                          3                -                               -

Nasutitermes matangensiformis                               W                            -                           -                           2                           -                          -                 -                               -

Nasutitermes neoparvus                                           W                            -                           -                           -                           1                         -                 -                               -

Nasutitermes sp. C                                                   W                            -                           -                           -                           2                         -                 -                               -

Nasutitermes sp. D                                                   W                            1                          -                           -                           -                          2                -                               -

 

                                                                                                  Primary             Logged            Jungle                   Rubber           Parase-Imperata                   Cassava

Species                                                             Functional              forest                forest                     rubber                   pltn.              ianthes                grassland          garden

                                                                              group                    (BS 1)                (BS 3)               (BS 10)                  (BS 8)             (BS 6)                          (BS 12)                            (BS 14)

 

Bulbitermes germanus                                              W                            2                          -                           -                      -                              -                 -                               -

Bulbitermes prabhae                                                W                            1                          -                           -                      -                              -                 -                               -

Bulbitermes sp. A                                                     W                            3                          1                          -                      -                              -                 -                               -

Hospitalitermes hospitalis                                        E                              4                          -                           -                      2                              -                 -                               -

Hospitalitermes sp. G                                              E                              -                           -                           -                      -                              -                 -                               -

Proaciculitermes ?malayanus                                   S                              1                          3                          -                      -                              -                 -                               -

Proaciculitermes sp. B                                             S                              2                          3                          -                      -                              -                 -                               -

Aciculioiditermes sp. C                                             S                              1                          -                           -                      -                              -                 -                               -

Oriensubulitermes inanis                                         S                              2                          4                          2                      -                              -                 -                               -

 

Number of species                                                    35                            23                        22                        16                    11                            2                1

Relative abundance (total hits)                                 110                          94                        83                        62                    35                            9                1

 


Figure 8.1.  Species richness of termites collected from transects in seven land-use types

       in JambiProvince, Central Sumatra

 


 

 

Figure 8.2.  Relative abundance of termites collected from transects in seven land-use

                    types   in JambiProvince, Central Sumatra