Soil Properties And Carbon Stocks

“Best bet” Land-use Systems

Thematic reports

Impact of different land uses on biodiversity

An Intensive Biodiversity Baseline Study in Jambi Province,Central Sumatra, Indonesia

 

Unique id: 10

Source file: D:\Projects\ASB\ASB Country and Thematic reports\Above ground biodiversity assessmet WG\C-Sec-10.xml

 

Authors: Kurniatun Hairiah, Meine van Noordwijk

 

--------------------------------------------------------------------------

10.1.   Introduction:

 

The integrated biodiversity survey compared a range of land-use practices in the Bungo-Tebo district in the lowland peneplain of Jambi. The landscape consists of an undulating plain, formed as marine sediment in the tertiary period (Van Noordwijk et al., 1995, 1997b). Most of the land in the interfluves is covered by highly leached oxisols/ultisols, with more recent sediment and generally higher fertility near the rivers where inceptisols and entisols dominate. The survey was intended to highlight the effects of land use on biodiversity, so variation in soil types would be minimized in the selection of sample points. As older human settlements, and hence an important land use type in the form of extensive rubber agroforest, are usually found close to the streams and rivers, not all sampling points could be located in the oxisol/ultisol complex.  

 

Data on conservative soil properties such as texture, pH and exchangeable cations were collected to check the extent to which all variation in biodiversity can be attributed to land use and management, rather than to a priori differences in soil and vegetation. Soil organic matter content and bulk density are likely to be influenced by land use, and may themselves become factors influencing development of vegetation and ecosystem function.  The above-ground biodiversity sampling protocol (Gillison et al., this volume) includes an estimate of woody plant basal area. For the full characterization of terrestrial carbon stocks the ASB project has developed a protocol quantifying biomass in trees, understorey vegetation, surface litter and dead wood, and soil carbon in the top 30 cm of the profile. Data were collected with this protocol to help calibrate the simpler assessment of woody plant basal area.

 

Decline of soil organic carbon content of (former) forest soils after forest conversion is a major concern, both for the on-site fertility of such soils and for estimating the impacts of land-use change on the global C balance in the context of climate change. Effects of land-use change on soil organic carbon (Corg), may be difficult to quantify from limited datasets, as generally no historical data are available of Corg before forest conversion, and one normally has to rely on 'paired' datasets of sites still under forest and those now under other land uses. Even moderate differences in soil texture and/or pH, however, can lead to changes in Corg of similar magnitude as those of the land use change. Van Noordwijk et al. (1999) proposed to use a ratio of the measured Corg and a reference Corg value for forest (top) soils of the same texture and pH as a 'sustainability indicator'. A substantial dataset of soils on Sumatra (Indonesia) was used to derive a pedotransfer function for such a reference value (Van Noordwijk et al., 1997a).

 

 

 

10.2.   Methods:

 

Methods for quantifying carbon stocks were used as specified in the ASB protocol (Palm et al., 1994). For the vegetation and soil macrofauna, the sampling area was based on the 40 x 5 m2 transect, as before. All tree diameters above 5 cm in the forest plots were measured by the BIOTROP team and data were converted into aboveground biomass with an allometric equation modified from Brown (1997) on the basis of additional data collected in the Jambi area (Ketterings et al., in prep.):

 

Y (kg tree-1) = 0.092 Diam 2.60

 

where tree diameter (Diam) is measured in cm.

Understorey and herbaceous layer vegetation was measured in eight  0.25 m2 quadrat samples (or four 1-m2 samples for non-forest plots); total fresh weight was measured, and subsamples were collected for determining dry matter content. Diameter and length of dead wood (> 5 cm diameter) were measured within the 40 x 5 m2 transect and converted to volume on the basis of a cylindrical form; three apparent density classes were used and ring samples were taken to assess the dry weight bulk density (g cm-3) of the partly decayed wood . Surface litter (including wood < 5 cm diameter) was collected down to the surface of the mineral soil in eight 0.25 m2 samples. To remove mineral soil particles, the litter samples were washed and sundried; subsamples were taken for dry matter content.

 

Soil bulk density was measured for the 0-5 cm top soil layer (8 replicates per sampling point) by carefully inserting a 165 cm3 ring from the mineral soil surface, just below the litter layer.

 

Soil samples were collected (composited from 8 sample points per 200 m2 sampling area) for the 0-5, 5-10, 10-20, 20-30 cm depth zone below the litter layer, passed through a 2 mm sieve and air-dried for analysis of texture (sand, silt, clay), pH (1N KCl), pH(H2O), P BrayII, Corg (Walkey and Black), Ntot (Kjeldahl), exchangeable K, Ca, Mg, Na, Al and H, and effective cation exchange capacity (ECEC) by summation. All these routine soil measurements were done on air-dried, sieved soil in the soils laboratory of BrawijayaUniversity (Malang, Indonesia) with methods consistent with those described in Anderson and Ingram (1993). In addition, a size-density fractionation of macro-organic matter based on Ludox solutions of various densities was used, as described by Hairiah et al. (1995, 1996a) and Meijboom et al. (1995), for the 0-5 and 5-10 cm depth zone. The reference value for Corg  (‘Cref’) was calculated on the basis of soil texture on the basis of a large data set of Sumatran soils (Van Noordwijk et al. 1997a, 1998, 1999).

 

 

10.3.   Field notes on sampling points:

 

Primary forest (BS 1,2) - two samples behind the permanent forest plots of BIOTROP but in the 25 ha reserve; the plots are on two sides of a small stream. Logged-over forest (BS 3,4,5) - three samples: no. 3 close to the second primary forest plot, on a ridge with logging track overgrown by ferns, secondary forest regrowth and patches of undisturbed forest; no. 4 and 5 in the logged-over forest (1983) where BIOTROP has permanent plots; no. 4 includes a recent tree fall, no. 5 appears to be little affected by the logging. Industrial timber plantation(HTI) (BS 6,7)- 5-year old Paraserianthes falcataria plantation; no. 6 close to the road and forest edge, no. 7 in the centre of the HTI area; (the Paraserianthes still seemed to be affected by a moth). Rubber plantation (BS 8,9) - 8-year old intensively managed rubber established by slash-and-burn from logged-over forest, along the main logging road in Pasir Mayang; both plots are part of a 18 ha farm established by a former employee of PT IFA, and currently partly operated by share-tappers; the plantation was established from seedlings obtained from the plantation project across the river (GT1 ?) and was managed in plantation-style (but without legume cover crops). Jungle rubber (BS 10,11) - a 45 (?) year old rubber agroforest in Dusun Tuo (across the Batang Hari river from Pasir Mayang), in a landscape with a lot of newly planted rubber (mostly seedlings). Imperata grassland (BS 12,13) - in Kuamang Kuning, close to the Imperata plots sampled in 1996. Cassava (BS 14,15) - in Kuamang Kuning, close to Imperata plots; part of the fields was opened by tractor, apparently for planting oil palm. Chromolaena fallow (BS 16) - in Dusun Tuo, close to the jungle rubber (10 and 11); a 3 (?) year old fallow, about to be re-opened for planting rice.

 

10.4.   Results and Discussion:

 

Soil characteristics are summarized in Table 10.1. Soil texture data show that the sampling points belong to essentially three groups:

 

soils with less than 20% clay in the top 5 cm (sampling points BS 1, 2 ,4, 5 and 6),

soils with 20-40% clay in the top 5 cm (BS 3, 7, 10, 11, 12, 13, 14, 15 & 16),

soils with more than 40% clay in the top 5 cm (sampling points BS  8 and 9).

 

These differences are probably a priori and not caused by current land use. The location of the rubber plantation (8&9) on a soil of higher clay content is probably typical for the position of rubber in the landscape. Comparisons between sites in different classes have to take these soil differences into account.

 

All sites were acid, with the highest pH (H2O) values found in the Imperata and Cassava sites around the transmigration village, possibly indicative of past lime applications (note that pH(KCl) values show less variation) and the Chromolaena fallow plot.

 

Soil organic carbon (Corg) and total N (Ntot) showed a strong decrease with depth, justifying the separation of the 0-5 and 5-10 cm depth layer. Available soil phosphorus levels were very low in sample 8, and relatively high in 10 and 11. The effective cation exchange capacity was low (< 12 cmole kg-1) in all soils. Al saturation was high in all soils, but lowest in sites 12 and 13. Overall, a weak buyt statistically significant relationship was found between Al-saturation and pH(H20):

 

Al-sat = 104.0 – 12.5 * pH(H2O)                    [n = 63, r2 = 0.23, P < 0.001]

 

Al-sat = 99.2 – 14.8 * pH(KCl                        [n = 63, r2 = 0.05, P = 0.045]

 

 

Bulk density measurements (Table 10.2) showed substantial differences between the plots; tracks in the logged over forest, the young industrial timber plantation and the Cassava and Imperata plots had a bulk density substantially higher than that of natural forest; the logged over forests outside the skidding track had a high coefficient of variation in bulk density, indicating patch-wise soil compaction

 

The differences between Corg of the topsoil between the sampling points probably reflect differences in soil texture as well as land use. When the Corg/Cref ratio is compared, the data appear to reflect land use effects more clearly (compare Figure 10.1A and 10.1C). The size/density fractionation data (Figure 10.1C) failed to differentiate clearly between the land uses.


 

Table 10.1.Measured soil parameters

 

No.

LUT

Depth

Texture

pH_H2O

pH_KCl

C_org

N_tot

C/N ratio

P_brayII

Exchangeable cations

ECEC

Al_sat

Sand

Silt

Clay

K

Na

Ca

Mg

Al

H

 

 

cm

%

 

 

%

%

 

mg kg-1

cmole kg-1

 

%

1

NF

0_5

62

24

14

4.0

3.5

4.01

0.28

14.3

10.2

0.16

0.34

1.65

0.41

4.19

1.16

7.91

53.0

1

NF

5_10

62

20

18

4.7

3.8

1.86

0.14

13.3

4.19

0.09

0.24

1.54

0.51

4.19

0.85

7.42

56.5

1

NF

10_20

62

20

18

4.9

3.9

1.20

0.09

13.3

2.09

0.08

0.22

1.54

0.10

3.59

0.89

6.42

55.9

1

NF

20_30

64

18

18

4.9

4.0

0.80

0.06

13.3

1.69

0.06

0.22

1.03

0.07

3.53

0.83

5.74

61.5

2

NF

0_5

67

22

11

4.2

3.5

3.21

0.19

16.9

9.19

0.19

0.31

1.54

0.62

3.71

1.27

7.64

48.6

2

NF

5_10

69

19

12

4.7

3.8

2.01

0.13

15.5

6.69

0.11

0.24

1.54

0.10

3.53

0.83

6.35

55.6

2

NF

10_20

66

17

17

4.8

3.7

1.61

0.12

13.4

2.69

0.11

0.23

3.61

1.03

3.17

0.93

9.08

34.9

2

NF

20_30

67

17

16

4.8

4.0

0.96

0.07

13.7

1.69

0.09

0.20

1.54

0.1

2.99

1.06

5.98

50.0

3

LOF

0_5

54

8

38

4.5

3.7

1.85

0.13

14.2

2.69

0.12

0.25

1.55

0.51

2.93

0.8

6.16

47.6

3

LOF

5_10

81

10

9

5.2

3.8

1.53

0.12

12.8

5.19

0.10

0.29

2.06

0.21

2.69

0.24

5.59

48.1

3

LOF

10_20

67

13

20

5.0

4.0

1.36

0.11

12.4

4.69

0.08

0.20

1.03

0.51

2.69

0.74

5.25

51.2

3

LOF

20_30

65

13

22

4.8

4.0

1.20

0.08

15.0

3.16

0.06

0.18

1.02

0.51

3.02

0.99

5.78

52.2

4

LOF

0_5

81

11

8

4.5

3.6

4.66

0.28

16.6

18.0

0.15

0.25

1.12

1.02

4.15

1.09

7.78

53.3

4

LOF

5_10

79

10

11

4.0

3.5

3.13

0.18

17.4

5.19

0.11

0.25

1.55

1.34

3.29

1.38

7.92

41.5

4

LOF

10_20

77

10

13

4.6

3.7

2.09

0.12

17.4

3.69

0.09

0.25

2.57

0.41

3.29

1.38

7.99

41.2

4

LOF

20_30

74

10

16

4.7

3.7

1.85

0.12

15.4

2.69

0.08

0.28

2.37

0.21

3.41

0.95

7.30

46.7

5

LOF

0_5

79

13

8

4.2

3.3

4.41

0.28

15.8

6.19

0.20

0.39

2.06

0.31

2.69

1.65

7.30

36.8

5

LOF

5_10

79

13

8

4.5

3.8

1.91

0.12

15.9

6.13

0.10

0.28

1.12

1.22

2.97

0.97

6.66

44.6

5

LOF

10_20

76

11

13

4.8

3.9

1.61

0.10

16.1

4.65

0.07

0.22

1.33

0.41

2.97

0.73

5.73

51.8

5

LOF

20_30

75

15

10

4.8

4.0

1.27

0.10

12.7

4.15

0.07

0.16

1.22

0.61

2.67

0.66

5.39

49.5

6

HTI

0_5

84

8

8

4.4

3.9

2.78

0.17

16.4

18.5

0.18

0.38

2.04

0.61

2.61

0.47

6.29

41.5

6

HTI

5_10

82

10

8

4.3

3.9

2.15

0.13

16.5

9.10

0.06

0.19

1.33

1.22

2.67

0.72

6.19

43.1

6

HTI

10_20

79

8

13

4.8

4.0

1.67

0.10

16.7

5.64

0.06

0.14

1.54

1.02

2.31

0.77

5.84

39.6

6

HTI

20_30

74

10

16

4.8

4.1

0.50

0.05

10.0

2.66

0.04

0.13

1.22

0.31

2.55

0.60

4.85

52.6

Table 10.1.Measured soil parameters

 

No.

LUT

Depth

Texture

pH_H2O

pH_KCl

C_org

N_tot

C/N ratio

P_brayII

Exchangeable cations

 

Al sat

Sand

Silt

Clay

K

Na

Ca

Mg

Al

H

ECEC

 

 

 

cm

%

 

 

%

%

 

mg kg-1

cmole kg-1

%

7

HTI

0_5

46

28

26

5.2

3.8

4.21

0.28

15.0

8.78

0.41

0.62

4.68

1.56

1.33

0.87

9.47

14.0

7

HTI

5_10

45

19

36

5.2

3.9

2.11

0.16

13.2

1.20

0.21

0.45

4.16

1.14

1.89

0.21

8.06

23.4

7

HTI

10_20

43

22

35

4.8

3.6

1.78

0.14

12.7

0.69

0.19

0.43

3.12

1.04

4.23

0.80

9.81

43.1

7

HTI

20_30

43

22

35

4.8

3.6

1.62

0.11

14.7

0.19

0.12

0.38

1.87

1.25

5.14

0.90

9.66

53.2

8

RUB_P

0_5

14

27

59

4.6

3.5

5.97

0.38

15.7

1.20

0.19

0.36

2.41

0.95

3.96

2.07

9.94

39.8

8

RUB_P

5_10

14

11

75

4.5

3.7

2.95

0.18

16.4

0.19

0.12

0.29

2.10

0.31

2.81

1.25

6.88

40.8

8

RUB_P

10_20

12

16

72

4.9

3.7

1.96

0.13

15.1

0.19

0.12

0.33

1.68

0.41

2.81

0.86

6.21

45.2

8

RUB_P

20_30

11

13

76

4.9

3.8

1.86

0.12

15.5

0.19

0.1

0.32

1.52

0.94

1.63

0.71

5.22

31.2

9

RUB_P

0_5

15

41

44

4.4

3.6

3.27

0.53

6.2

10.0

0.27

0.38

1.78

0.59

5.67

1.89

9.40

60.3

9

RUB_P

5_10

13

15

72

4.8

3.7

2.41

0.31

7.8

7.50

0.13

0.36

1.62

0.42

3.23

1.21

7.65

42.2

9

RUB_P

10_20

13

18

69

4.7

3.9

2.19

0.16

13.7

1.25

0.09

0.18

1.80

1.08

3.14

1.04

7.50

41.9

9

RUB_P

20_30

12

23

65

4.5

3.9

2.13

0.14

15.2

0.18

0.05

0.17

1.57

0.63

3.36

1.08

6.82

49.3

10

J_RUB

0_5

6

70

24

5.2

3.8

6.23

0.46

13.5

41.5

0.51

0.69

2.37

0.76

5.31

2.63

10.7

49.5

10

J_RUB

5_10

7

58

35

5.1

3.8

3.97

0.28

14.2

17.2

0.23

0.63

2.12

0.42

5.05

1.49

11.1

45.6

10

J_RUB

10_20

5

54

41

5.1

3.8

2.81

0.22

12.8

10.5

0.22

0.37

1.59

0.21

4.93

1.48

8.81

56.0

10

J_RUB

20_30

5

46

49

5.1

3.8

2.13

0.19

11.2

4.78

0.13

0.31

1.26

0.31

4.88

1.15

8.37

58.3

11

J_RUB

0_5

9

52

39

5.4

3.9

5.76

0.37

15.6

32.8

0.46

0.68

2.46

0.33

3.39

1.76

8.47

40.0

11

J_RUB

5_10

9

50

41

5.3

3.9

3.20

0.27

11.9

10.2

0.25

0.45

1.71

0.23

3.98

1.53

8.38

47.5

11

J_RUB

10_20

9

42

49

5.2

3.8

2.44

0.23

10.6

5.44

0.25

0.42

1.84

0.32

3.77

1.26

8.13

46.4

11

J_RUB

20_30

7

33

60

5.1

3.8

2.11

0.20

10.6

1.30

0.27

0.52

1.72

0.34

3.10

1.02

7.21

43.0

12

IMP

0_5

66

14

20

5.8

4.1

2.19

0.13

16.8

8.27

0.20

0.36

1.56

1.04

1.21

0.05

5.39

22.4

12

IMP

5_10

67

11

22

5.5

4.2

2.03

0.12

16.9

6.25

0.12

0.37

1.35

0.41

1.03

0.61

3.33

30.9

12

IMP

10_20

69

9

22

5.3

3.8

1.78

0.10

17.8

1.20

0.11

0.31

1.35

0.73

1.51

0.31

4.62

32.7

12

IMP

20_30

61

13

26

5.2

3.9

1.22

0.09

13.6

1.20

0.05

0.22

1.56

0.52

2.00

0.39

4.66

42.9

13

IMP

0_5

66

13

21

5.7

4.0

2.23

0.13

17.2

4.15

0.09

0.42

1.12

0.51

1.18

0.67

3.71

31.8

13

IMP

5_10

67

5

28

5.6

4.0

2.10

0.12

17.5

3.16

0.20

0.45

1.12

0.71

1.48

0.68

4.63

32.0

Table 10.1.Measured soil parameters

 

No.

LUT

Depth

Texture

pH_H2O

pH_KCl

C_org

N_tot

C/N ratio

P_brayII

Exchangeable cations

 

Al sat

Sand

Silt

Clay

K

Na

Ca

Mg

Al

H

ECEC

 

 

cm

%

 

 

%

%

 

mg kg-1

cmole kg-1

%

13

IMP

10_20

65

8

27

5.4

4.0

2.07

0.12

17.3

2.66

0.18

0.44

1.72

0.41

1.78

0.19

5.21

34.2

13

IMP

20_30

65

8

27

5.4

4.0

1.51

0.09

16.8

1.67

0.14

0.41

1.34

1.02

1.78

0.38

4.88

36.5

14

CAS

0_5

61

16

23

5.0

3.8

1.51

0.11

13.7

18.0

0.11

0.25

1.02

0.81

2.19

0.09

4.76

46.0

14

CAS

5_10

57

16

27

5.0

3.8

1.27

0.10

12.7

6.13

0.10

0.24

1.63

0.94

2.07

0.82

5.07

40.8

14

CAS

10_20

54

19

27

5.0

3.8

0.97

0.09

10.8

2.21

0.06

0.23

2.29

0.63

2.12

0.71

6.15

34.5

14

CAS

20_30

51

16

33

4.8

3.8

0.49

0.05

9.8

0.19

0.05

0.22

1.56

1.04

2.48

0.41

6.06

40.9

15

CAS

0_5

68

13

19

5.1

3.9

1.78

0.12

14.8

17.4

0.11

0.36

2.08

0.45

1.51

0.50

4.92

30.7

15

CAS

5_10

61

18

21

5.1

3.8

1.70

0.11

15.5

7.77

0.11

0.34

1.56

0.52

1.51

0.69

4.54

33.3

15

CAS

10_20

60

16

24

5.2

3.9

1.62

0.10

16.2

6.76

0.11

0.31

1.56

1.04

1.81

0.70

5.52

32.8

15

CAS

20_30

60

16

24

5.2

3.9

1.38

0.10

13.8

4.23

0.08

0.29

1.56

0.41

1.81

0.70

4.85

37.3

16

CHRO

0_5

9

66

25

5.7

4.2

4.66

0.32

14.6

35.1

0.48

0.88

2.64

2.41

1.20

0.88

8.31

14.4

16

CHRO

5_10

9

59

32

5.3

3.9

3.64

0.28

13.0

17.9

0.28

0.71

2.28

0.57

2.65

1.49

7.37

36.0

16

CHRO

10_20

6

57

37

4.9

3.8

2.72

0.20

13.6

6.49

0.27

0.61

2.96

0.22

2.85

1.43

8.40

33.9

16

CHRO

20_30

10

52

38

4.8

3.7

2.27

0.16

14.2

3.37

0.12

0.54

1.62

0.54

3.45

1.12

7.70

44.8

 


 

Table 10.2.

Bulk density (g cm-3) of the top 5 cm based on 8 replicates per sampling point

 

Number

Code

Mean

Standard

deviation

Coefficient

of variation

Standard error

of mean

BS01

NF

0.67

0.164

0.245

0.06

BS02

NF

0.69

0.141

0.203

0.05

BS03

LOF

0.87

0.377

0.434

0.13

BS04

LOF

0.75

0.155

0.206

0.05

BS05

L0F

0.69

0.268

0.386

0.09

BS05

TRACK

1.20

0.218

0.181

0.08

BS06

HTI

1.01

0.155

0.154

0.05

BS07

HTI

1.00

0.108

0.107

0.04

BS08

RUB_P

0.79

0.069

0.088

0.02

BS09

RUB_P

0.66

0.138

0.208

0.05

BS10

J_RUB

0.65

0.063

0.097

0.02

BS11

J_RUB

0.73

0.103

0.141

0.04

BS12

IMP

1.12

0.076

0.068

0.03

BS13

IMP

1.26

0.089

0.071

0.03

BS14

CAS

1.31

0.142

0.108

0.05

BS15

CAS

1.16

0.146

0.126

0.05

BS16

CHROM

0.77

0.079

0.103

0.03

 

 

Table 10.3.

Soil organic matter data compared to the reference value Cref

(based on regression of Corg on soil texture fore a large data set of Sumatran soils)

and results of the size/ density fractionation of soil with Ludox

 

Depth

LUT

Corg

%

Cref

%

Corg/Cref

Light

g kg-1

Intermediate

g kg-1

Heavy

g kg-1

0-5 cm

 

 

 

 

 

 

Nat.Forest

3.88

2.84

1.37

6.68

8.11

1.81

Logged F.

3.26

2.91

1.20

2.06

5.64

1.73

R.Agroforest

6.00

4.36

1.38

1.87

3.31

0.90

Rub.plant.

4.62

4.62

0.99

3.25

5.90

8.59

Timb.plant.

3.50

2.83

1.23

5.94

7.15

1.63

Cassava

1.65

2.84

0.58

1.22

1.41

2.13

Imperata

2.21

2.72

0.81

0.72

1.35

2.11

Chromolaena

4.66

4.01

1.16

1.08

5.53

0.92

5-10 cm

 

 

 

 

 

 

Nat.Forest

1.93

2.69

0.72

0.96

1.21

0.52

Logged F.

2.33

2.54

0.91

1.23

3.17

1.24

R.Agroforest

3.59

4.43

0.81

0.59

0.44

0.63

Rub.plant.

2.68

4.84

0.55

0.43

0.60

0.28

Timb.plant.

2.13

2.88

0.76

1.31

4.50

1.58

Cassava

1.49

3.00

0.50

0.68

1.37

1.86

Imperata

2.07

2.71

0.76

0.29

2.28

1.41

Chromolaena

3.64

4.28

0.85

0.48

0.87

2.15


 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Figure 10.1.Indicators of soil organic matter saturation: A.l; Corg, B. Corg/Cref, C. Size-density fractions (LUDOX method), grouped by land use.

 

Table 10.4

Dry weights and C stocks for the 16 sampling points

 

 

B

 

 

Dry weight kg m-2

C-stock kg m-2

BS

No.

Code

SystAge,

year

Dead wood

Litter

Green biomass

Trees

Necromass

Biomass

Soil

0-20 cm

Total

1

NF

100.0

 21.31

1.37

0.13

93.60

10.21

42.18

3.33

55.72

2

NF

100.0

   4.16

1.28

0.00

88.50

  2.45

39.83

3.58

45.85

3

LOF

  15.0

 16.76

1.50

0.00

11.30

  8.21

  5.09

3.13

16.43

4

LOF

  15.0

 22.19

0.91

0.05

25.80

10.40

11.63

5.46

27.49

5

LOF

100.0

   1.26

1.11

0.01

86.20

  1.07

38.79

3.95

43.81

6

HTI

    5.0

 14.94

1.78

0.25

   8.00

  7.53

  3.71

4.53

15.77

7

HTI

    5.0

   0.56

1.03

0.09

   9.45

  0.71

  4.29

5.18

10.18

8

RUB_P

  10.0

   7.67

0.77

0.11

13.70

  3.80

  6.21

5.83

15.84

9

RUB_P

  10.0

12.30

0.68

0.08

17.80

  5.84

  8.05

4.30

18.19

10

J_RUB

  35.0

13.50

0.62

0.03

21.60

  6.35

  9.73

6.51

22.60

11

J_RUB

  35.0

   2.02

0.91

0.02

28.70

  1.32

12.92

6.23

20.48

12

Imp

    1.0

   0.00

0.11

0.23

  0.00

  0.05

  0.10

4.53

  4.68

13

Imp

    1.0

   0.00

0.09

0.18

  0.00

  0.04

  0.08

5.46

  5.58

14

Cas

    0.5

   0.00

0.06

0.21

  0.00

  0.03

  0.09

3.16

  3.28

15

Cas

    0.5

   0.00

0.04

0.29

  0.00

  0.02

  0.13

4.08

  4.22

16

Chrom

    3.0

   0.00

0.56

0.34

  0.00

  0.25

  0.15

6.42

  6.82

 

 

Table 10.4 summarizes data on the above and belowground carbon stocks for all sampling points. The total values for the forest plots (around 50 kg m-2, corresponding to 500 Mg ha-1) are consistent with other data for lowland forests sampled in the ASB project (Woomer et al., 1998?). The logged over forests had substantially lower biomass AC stocks, but partly made up fror the difference by high dead wood (necromass) stocks.

 


 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


Figure 10.2. Relation between total aboveground C stock (biomass and necromass) and time since last slash, burn or cultivation event; the slope indicates an average annual C    stock increment of 2.5 Mg C ha-1 year-1

 

 

 

 

 

10.5.References

 

Anderson J.M. and J.S.I. Ingram (eds.) (###) Tropical Soil Biology and Fertility, a Handbook of Methods. CAB International, Wallingford (UK)

Brown, S., (1997). Estimating Biomass Change of TropicalForest. FAO, Forestry Paper. FAO.USA.

Hairiah, K., Cadisch, G. van Noordwijk, M., Latief, A.R.,Mahabharata and Syekhfani, (1995). Size-density and isotopic fractionation of soil organic matter after forest conversion. In: A. Schulte and D. Ruhiyat eds. Proc. Balikpapan Conf. on Forest Soils Vol. 2: 70-87. MulawarmanUniversity Press, Samarinda, Indonesia

Hairiah, K., Van Noordwijk, M. and Latief, A.R., (1996a). Soil organic matter fractionation under different land use types in N. Lampung. AGRIVITA 19: 146-149.

Hairiah, K., Kasniari, D.N., Van Noordwijk, M. and de Foresta, H. and Syekhfani M.S., (1996b). Soil properties, litterfall, above-and belowground biomass during a Chromolaena odorata  fallow. AGRIVITA 19: 184-192.

Meijboom F.W., Hassink J. and Van Noordwijk, M., 1995 Density fractionation of soil macroorganic matter using silica suspensions. Soil Biology and Biochemistry27: 1109-1111.

Palm, C, Hairiah, K. and Van Noordwijk, M., (1994). Methods for sampling above and belowground organic pools for ASB sites. in: D.M. Murdiyarso, K. Hairiah and M. Van Noordwijk (Eds.) Modelling and Measuring Soil Organic Matter Dynamics and Greenhouse Gas Emissions after Forest Conversion. Proceedings of Workshop/ Training Course 8-15 August 1994, Bogor/Muara Tebo. ASB-Indonesia publication No. 1. pp 57-71

Van Noordwijk, M., Tomich, T.P., Winahyu, R., Murdiyarso, D., Partoharjono, S. and Fagi, A.M.  (Eds.) (1995). Alternatives to Slash-and-Burn in Indonesia, Summary Report of Phase 1. ASB-Indonesia Report Number 4, Bogor, Indonesia

Van Noordwijk, M., Woomer P., Cerri C., Bernoux, M. and Nugroho, K., (1997a). Soil carbon in the humid tropical forest zone. Geoderma79: 187-225

Van Noordwijk, M, T.P. Tomich, D.P. Garrity and A.M. Fagi (Eds.), (1997b). Alternatives to Slash-and-Burn Research in Indonesia. ASB-Indonesia Report Number 6. Agency for Agricultural Research and Development, Bogor, Indonesia (ISBN 979-8161-59-9)

Van Noordwijk, M., D. Murdiyarso, K. Hairiah, U.R. Wasrin, A. Rachman and T.P. Tomich, (1998). Forest soils under alternatives to slash-and-burn agriculture in Sumatra, Indonesia. In: A. Schulte and D. Ruhiyat (eds.) Soils of TropicalForest Ecosystems: Characteristics, Ecology and management. pp. 175-185. Springer-Verlag, Berlin.

Van Noordwijk, M., Hairiah, K., Woomer, P.L. and Murdiyarso, D. (1999) Criteria and indicators of forest soils used for slash-and-burn agriculture and alternative land uses in Indonesia. in: E. Davidson (Ed.) ASA publication   in press

Woomer, P.L., Palm, C.A., Alegre, J., Castilla, C., Cordeiro, D.G., Hairiah, K., Kotto-Same, J., Moukam, A., Ricse, A., Rodriguez, V. and Van Noordwijk, M., 1998?. Carbon dynamics in slash-and-burn systems and land use alternatives. In:.(Eds.) .... in press