Swiddens in transition:
shifted perceptions on shifting
cultivators in Indonesia

Meine van Noordwijk, Elok Mulyoutami,
Niken Sakuntaladewi, and Fahmuddin Agus
Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia

Meine van Noordwijk
Elok Mulyoutami
Niken Sakuntaladewi
Fahmuddin Agus
Titles in the Occasional Papers series aim to disseminate information on Agroforestry research and practices and stimulate feedback from the scientific community. Other publication series from the World Agroforestry Centre include: Agroforestry Perspectives, Technical Manuals and Working Papers.

Correct citation:

Published by the World Agroforestry Centre
ICRAF Southeast Asia Regional Office
Jl. CIFOR, Situ Gede, Sindang Barang, Bogor 16115
PO Box 161, Bogor 16001, Indonesia
Tel: 62 251 8625415, fax: 62 251 8625416
Email: icraf-indonesia@cgiar.org
ICRAF Southeast Asia website: http://www.worldagroforestry.org/sea

© World Agroforestry Centre 2008

Articles appearing in this publication may be quoted or reproduced without charge, provided the source is acknowledged.

All images remain the sole property of their source and may not be used for any purpose without written permission of the source.

Printed in Indonesia
Authors

Meine van Noordwijk is an ecologist who joined the World Agroforestry Centre’s Southeast Asia programme in Bogor in 1993 to support the activities of the Alternatives to Slash and Burn Programme, now the ASB Partnership for the Tropical Forest Margins. He currently serves as regional coordinator for the centre’s Southeast Asia programme and as regional facilitator for ASB. He obtained his Ph.D. in 1987 from Wageningen Agricultural University in the Netherlands.

Elok Mulyoutami is an anthropologist who joined the World Agroforestry Centre in 2003 as a researcher on local ecological knowledge and farming systems in the Agroforest Management Unit. She obtained her degree in anthropology from Padjadjaran University in Bandung in 2000.

Niken Sakuntaladewi is a forest policy analyst at the Indonesian Forest Research and Development Agency and is currently seconded to the World Agroforestry Centre’s Bogor office to enhance liaison between the centre and the Ministry of Forestry. She obtained her Ph.D. in 1998 from the Department of Forestry, North Carolina State University, USA.

Fahmuddin Agus is a soil scientist at the Indonesian Soil Research Institute of the Agency for Agricultural Research and Development and serves as the coordinator of ASB Indonesia. He earned his Ph.D in 1993 from the Department of Soil Science, North Carolina State University, USA.
Abbreviations

Al aluminium
ASB Alternatives to Slash and Burn
Ca calcium
CEC cation exchange capacity
cm centimetre
CO2 carbon dioxide
Fe iron
ha hectare
K potassium
kg kilogramme
km kilometre
N nitrogen
m metre
Mg Depending on context: magnesium or Mega-gram (10^6 g)
mg Milligram
No. Number
P Phosphorus
pers. comm. personal communication
REDD reducing emissions from deforestation and degradation in developing countries
S Sulphur
tonne (1,000 kg)
Abstract

Swidden is the origin of all current agricultural systems across Asia. How it has evolved in different settings depends on which period and products in the cycle—the food cropping phase or the regenerating fallow phase—emerge as the most economically important. Carbon stocks decline as forest is converted into intensively managed plantation or cropland, whether by burning or not. Focusing on fire does not mitigate the loss of diversity in traditional crops and the wild component of agroforests. By refusing to accept the tradition of shifting cultivation of food crops in situations where it still is sustainable, and by restricting access to forest resources, existing forest policies in Indonesia have forced intensification on nearby unprotected land and fomented conflicts over land use. The Indonesian government’s early focus on jumpstarting intensive permanent cropping shifted to supporting tree crop monocultures. It would be better support the gradual evolution of swiddens and the agroforestry systems derived from it in accordance with local expectations.
Acknowledgements

We would like to express our gratitude to all those who participated in the seminar and workshop ‘Keberadaan perladangan berpindah di Indonesia’ on 17-18 April 2008 in Bogor. We would like to thank in particular Abigail and Darif Abot, representing farmers in Malinau, East Kalimantan; Susilawati of the Forest Agency in Malinau; Marzuki Hasyim, a farmer representative from West Aceh; Hasri Mulizar of Flora and Fauna International, West Aceh; Syahril of Bappeda, West Aceh; Jamil and Farida, farmer representatives from Muara Bungo, Jambi; Havizzudin of the Forestry and Plantation Agency of Muara Bungo; Rojak Nurhawan and Atim Khaetami, representing farmers in Nanggung, West Java; Nia Ramdhaniyat of Rimbauan Muda Indonesia in Bogor; Erminna Mabel, representing farmers in Jayapura, Papua; Joseph Watop of Conservation International Papua; Yafeth Wator of Bapedalda, Papua; Jim Sami of Riak Bumi, Pontianak; and Rahmat, a farmer representative from Semalah, Kapuas Hulu, West Kalimantan. We also thank Manuel Boissiere, Godwin Limberg, Linda Yuliani, Yayan Indriatmoko and Valentinus Henry of Riak Bumi; Iwan Ramses of the Centre for International Forestry Research in Malinau; and Gamma Galudra, Ratna Akiefnawati and Ery Nugraha for their advice on selecting participants. We thank Patrice Levang for his active role in the workshop and seminar. We thank the organizers and participants of the meeting in Hanoi for their active interest in and comments on the Bogor workshop, especially Christine Padoch. We acknowledge the generosity and thoughtfulness of our donor, Ujjwal Pradhan of the Ford Foundation. Last but not least, thanks to Carol Colfer, Martua Sirait, Brent Swallow, Laxman Joshi, Johan Kieft, Satyawan Sunito and Christine Padoch for their valuable input. Peter Fredenburg and Michael Hailu assisted with technical editing.
Table of contents

Acknowledgements vi
Preface ix
Executive Summary x

1. Introduction 1
 1.1 Asia-wide review 1
 1.2 Indonesia case studies 2

2. Main trends of intensifying agriculture in space and time 4
 2.1 Swidden transitions 4
 2.2 Trends 6

3. Forest access and land classification 9
 3.1 Historical and international context 9
 3.1.1 Brief history of forest institutions in Indonesia 9
 3.1.2 Shifting cultivation is not deforestation by agreed definitions 11
 3.2 Current legal pluralism 11
 3.2.1 Customary land in the state forest land 12
 3.2.2 Customary land in non-forest land 12
 3.3 Returnees, migrants and ambiguity of land rights 13
 3.4 National parks 14

4. Evolution of the crop phase 16
 4.1 Agrobiodiversity 16
 4.2 Local ecological knowledge 19

5. Intensification of the fallow phase 20
 5.1 Two intensification pathways 20
 5.2 Nutrients 20
 5.2.1 Nutrient accumulation during the fallow period 24
 5.2.2 Fire effects on nutrient supply 21
 5.2.3 Nutrient removal and dynamics during cultivation 24
 5.3 Imperata as a sign of overintensification 25
 5.4 The ‘falls’ may become the primary source of cash 26
 5.5 Fallow management network experience 28

6. The fallowcrop transition in the landscape 29
 6.1 Fire and smoke issues 29
 6.2 Hydrology 39
 6.3 Erosion and sedimentation 39
 6.4 Biodiversity and carbon stocks 32
 6.4.1 Carbon stocks 32
 6.4.2 Biodiversity 33

7. Rural development programmes 34
 7.1 Permanent food-crop agriculture 34
 7.2 Oil palm plantations 34
 7.3 Government officers’ understanding of shifting cultivation 36
 7.4 Shifting cultivation, the current condition 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Policy discussion: voluntary or imposed change</td>
<td>40</td>
</tr>
<tr>
<td>8.1 An example of spontaneous transformation, followed by forest destruction</td>
<td>40</td>
</tr>
<tr>
<td>8.2 An example of forced transformation: Aceh during and after the conflict</td>
<td>40</td>
</tr>
<tr>
<td>8.3 Socioeconomic transition</td>
<td>41</td>
</tr>
<tr>
<td>8.4 Criteria for situation C</td>
<td>41</td>
</tr>
<tr>
<td>8.5 REDD and swiddening</td>
<td>42</td>
</tr>
<tr>
<td>8.6 Global economy as the new shifting cultivation</td>
<td>42</td>
</tr>
<tr>
<td>8.7 Dealing with the local dynamics of swiddens</td>
<td>42</td>
</tr>
<tr>
<td>9. Conclusions and recommendations</td>
<td>43</td>
</tr>
<tr>
<td>9.1 Main findings</td>
<td>43</td>
</tr>
<tr>
<td>9.2 Policy-relevant conclusions</td>
<td>44</td>
</tr>
<tr>
<td>9.3 Recommendations to the policy arena</td>
<td>44</td>
</tr>
<tr>
<td>References</td>
<td>45</td>
</tr>
</tbody>
</table>
Fifteen years ago, Alternatives to Slash and Burn (ASB) started as a global program of the agricultural research centres supported by the Consultative Group on International Agricultural Research, together with national agricultural research systems, universities and nongovernmental organizations in the humid tropics. The primary driver of this applied research program was the international concern over the loss of tropical forests expressed in the Rio conventions on climate change and biodiversity conservation. Much was expected of agricultural intensification as a way to reduce the amount of land needed to meet local and global demand and thus create conditions for forest conservation.

The early characterization phase of ASB in Indonesia focused on Sumatra and made clear that slash and burn is used, not just in remnants of traditional swiddening, but also to clear land for resettled farmers in transmigration programs, start tree crop plantations both smallholder and large, and establish industrial timber estates (van Noordwijk et al., 1997). The association of slash and burn with traditional shifting cultivation proved to be false in Sumatra, and ASB transformed itself into a more comprehensive study of land-use change and its social, environmental and economic consequences. Its analysis of the tradeoffs and choices to reconcile environmental and development concerns then gave rise to early forms of rewarding upland poor for the environmental services they provide. In parallel, the improved fallow network documented the many innovations across Asia for intensifying land use in smallholder farming systems that have evolved from classical swidden in response to opportunities for market integration and to pressures on land. The monumental Voices from the forest: integrating indigenous knowledge into sustainable upland farming, edited by Malcolm Cairns, finally appeared in 2007.

In the meantime, swiddens are still an important way of life in some of the more remote parts of Indonesia. The chain of events that transformed much of Sumatra, for good and for bad, is repeating itself on other islands. The same perceptions of shifting cultivation as the main culprit of forest loss keep coming back in the public debate, often without much evidence. Lessons from one place must be shared elsewhere. This volume is a contribution to the broader debate and follows from a regional review meeting in Hanoi, Vietnam, followed by a review focused on Indonesia. We hope it will help to create a more realistic assessment of the challenges and opportunities faced by people living in the forest margins of Indonesia.

Ahmad Muzakir Fagi
Former Director of the Indonesian Food Crop Research Institute and First Coordinator of ASB-Indonesia

Bogor, September 2008

Dennis P. Garrity
Director General of the World Agroforestry Centre and Chair of ASB Global Steering Group
Executive Summary

<table>
<thead>
<tr>
<th>Main Findings</th>
<th>Policy recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Definitions used in the policy arena and the institutional construction of a separate forest domain do not match local perceptions of rights, the actual dynamics of land use or the way swidden systems tend to evolve by adding value to the fallow and/or crop phase. A coherent system of land use is artificially split by separate forest and agriculture institutional frameworks. Claims to land by forestry institutions and the transfer of rights to logging and/or plantation companies trigger change in swidden communities.</td>
<td>1. Disentangle the debates on the functional roles of woody vegetation for society (the forest function) and the institutions and rights to use and modify woody vegetation and land use (forest institutions and governance, the agrarian issue) to achieve more evidence-based public dialogue and improve the transparency of decision making. Create an integrated platform to deal with the forest-agriculture continuum and its policies.</td>
</tr>
<tr>
<td>2. The contest for land in relations between the state and local communities, and between members of the community and spontaneous and state-sponsored migrants, plays a dominant role in the decisions about clearing woody vegetation and replacing it with annual and perennial crops.</td>
<td>2. Substantially increase capacity to resolve land conflicts based on analyses of historical claims within the existing legal framework, which delegates the management of forest function to the Forestry Law and regulates all issues of land rights in the Agrarian Law.</td>
</tr>
<tr>
<td>3. Remote communities’ market integration in Indonesia has historically arisen mostly from the modification of the fallow into an agroforest and the further intensification of agroforests into specialized tree crop production systems. It has not been led by changes in the crop phase of the swidden cycle.</td>
<td>3. Recognize the double-edged sword of restricting the use of forest resources. Support the development of markets for forest commodities through basic certification that distinguishes domesticated and semi-domesticated resources from wild ones that require protection. Support the utilization of existing agrobiodiversity.</td>
</tr>
<tr>
<td>4. The current focus on reducing the use of fire does not mitigate the long-term ecological concerns over the conversion of natural forest into intensively managed plantations. The loss of diversity in crops and the wild component of agroforests is less visible than smoke.</td>
<td>4. Improve data collection and analysis to support the formulation of more evidence-based policies to maintain environmental services and turn the focus from symptoms like smoke to the underlying causes of the loss of natural capital.</td>
</tr>
<tr>
<td>5. The rural development paradigm has switched from jumpstarting intensive permanent cropping to supporting intensive monoculture tree crops, rather than supporting gradual change in accordance with local expectations.</td>
<td>5. Respect local ambitions and expectations in support of sustainable development and critically review current subsidies for monocultures and support for land grabs by external investors or state agencies.</td>
</tr>
</tbody>
</table>

1. Definitions and forest institutions

‘Swiddens’ are land that is cleared of woody vegetation for the temporary production of staple food crops mixed with other annuals and/or perennials useful for local use and/or markets. Sometimes swiddening is termed ‘traditional shifting cultivation’, to differentiate it from the way migrants and agribusinesses temporarily use land without committing to its long-term sustainable use. The term ‘slash and burn’ refers to a method of clearing land used by large plantations and migrant farmers (or ‘shifted cultivators’) as well as in swiddens, often with negative associations of forest destruction. Even if these terms are technically synonyms, they set the tone and colour the debate. Depending on perspective, the gradual or abrupt changes in the practice are seen as either a solution or a problem in the search for sustainable development.

Less than 5% of the rural population in Indonesia has direct links to swiddening, but swiddens are prominent in about half of Indonesia’s land and forest area. This apparent discrepancy is caused by the low population density associated with swiddens. As part of a synthesis for Southeast Asia, we reviewed the perceptions and concerns of farmers practicing swiddens, and of local and national governments, and compared them with the results of social, economic and biophysical science.
In response to market opportunities, such demographic changes as increases in population density and circular migration, restrictions on land use, and specific policies, the practice of swiddening constantly changes. Some of these changes occur within the existing definition while others cross over to other categories, but there is no uniform and consistent data collection that allows firm statements to be made on the extent of the practice or the number of people involved.

Forest definition: The internationally accepted definition of forest has two components: one specifies canopy cover and tree height, and that the other refers to the institutional framework of forestry, as it includes areas normally forming part of the forest area that are temporarily unstocked, as a result of human intervention such as harvesting or natural causes, but are expected to revert to forest.

Shifting cultivation is a forest-management practice within the internationally accepted definition of forest, as long as, in the woody regrowth phase, tree canopy cover meets the 30% minimum used in the definition and tree height meets the 5 meter (m) minimum. By definition, shifting cultivation cannot therefore be said to be a cause of deforestation, but it becomes a cause when the intensification of the system keeps the woody vegetation phase below the definitional limit. Existing forest policies, however, do not accept the shifting cultivation of food crops as a practice and, by restricting access to existing woody vegetation, have forced intensification on outside land and conflicts over the traditional use of land. Intensification and the increased market orientation of production systems are thus a consequence of and a challenge for policies aiming to protect the ecological functions of old-growth woody vegetation and the institutions that have developed around timber-based forest management.

Figure a: Schematic relationship between the intensity of annual cropping (Ruthenberg R) and the total economic returns per unit of labour (left) and land (right). The positions of the land-use systems are approximate and depend on the relative value of forest or tree crop products and the annual food crop.

Figure b: The (A) historical shift in dependence on swiddens in provinces of Indonesia according to Richards and Flint (1994) in relation to (B) 1990 population density and (C) forest cover data.
Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia

According to the Richards and Flint index at provincial scale, the percentage of Indonesia’s population outside of areas classified as urban that are fully dependent on swidden was 1.4% in 1980, but swidden involved 14.2% of the area of Indonesia and 18.9% of its forest. For 5.5% of the population, 48% of the area and 87.9% of the forest, the swidden index was at least 0.6, indicating a mixed livelihood strategy of swiddens with other forms of agriculture. For 24.9% of the population, 80.5% of the area and 87.9% of the forest, the swidden index was at least 0.3, indicating swiddens continued relevance in the overall livelihood pattern. For the remaining 75.1% of the population outside cities, 19.4% of the area and 12.1% of the forest, swidden played a minor or negligible role.

2. Access to land

Existing summaries suggest strong regional differentiation in Indonesia. At one end of the scale, major parts of Java moved out of shifting cultivation into permanent cropping before 1900, but with interesting local exceptions. At the other end, Papua still relies mostly on swiddens. Overall forest cover is positively associated with dependence on shifting cultivation, and population density has a negative association. The fraction of land used for irrigated rice is neutral with relation with forest cover once the effects of population density are accounted for. Most of the existing swidden systems occur in landscapes with fewer than 5 people per kilometre (km²), but the case study of sweet potato-based agriculture in Papua has 17 per km². Land availability relative to local labour, the basing of local land rights on tree planting and the anticipation of future changes determine the transition of swiddens and their fallow into agroforests and tree plantations with initial food intercropping.

3. Market access and integration

An important transition in swidden systems occurs when the tree component of the fallow vegetation gains major economic importance, as happened in the development of rubber and mixed fruit-tree agroforests. Historically this change has occurred many times over. From examples in Sumatra, we can learn how local communities protected options for local food production in communal swiddens from the privatization of land that is linked to tree planting in the fallows.

Swidden transitions in Indonesia may have been primarily triggered by increased market integration for native non-timber forest products and the introduced tree crops of rubber and coffee that were initially compatible with woody fallow vegetation. Market integration starts with sources of income complementing local food production but, with attractive prices, can lead to reliance on the market for staple foods. As many forest and agroforest products have relatively high value per unit of weight, they provide options for fairly remote communities. Farmers who attempt to intensify food crop production may find it challenging to integrate into markets unless road access is good. The agroforest solution that combines high biodiversity at the landscape level with medium market integration is not an endpoint of the evolution, however, and may transform into more intensive tree crop monocultures, as is the current trend in rubber agroforests.

4. Loss of diversity and the focus on smoke and haze

The local dynamics of change in swidden practice include the maintenance of local food crop diversity and the opportunities and risks involved in specialization and the adoption of new cultivars and germplasm that may improve productivity in a limited sense but also entail an increased risk of failure. Our case studies document this for upland rice swiddens in Kalimantan and sweet potato-based swiddens in Papua.

Technical understanding of the benefits and risks of the use of fire in clearing land have distinguished between the heat and ash effects of biomass burning and its impacts toward increasing the availability of phosphorus (P), a limiting plant nutrient when unavailable. Substantial losses in nitrogen and cations occur, but crop growth benefits from the P released by heating soil. Erosion tends to be high after land is cleared, but existing landscape filters may prevent soil loss at the landscape scale as long as the fraction cleared in any year is small and vegetation is maintained in the riparian zone.

Figure c: Schematic relationship among the degree of market integration, landscape-scale biodiversity of swiddens and derivative land use systems.

Figure d: Three policy domains with regard to swidden systems and their transformations.
5. Rural development paradigm

Government support for rural development has often focused on a rapid transition to either permanent food cropping or specialized, often monocultural tree crop systems, rather than supporting the gradual evolution of systems. Current experience with oil palm as an economic commodity shows different trajectories for Sumatra, where old palm production by independent smallholders is emerging, and Kalimantan, where contracts between companies and local communities over land access and transformation into oil palm monoculture continue to pose a challenge.
1.1 Asia-wide review

'Swiddening' is a way of life associated with cultural traditions; 'shifting cultivation' is a technical description of a land-use system that alternates cropping and fallow; and 'slash and burn' is a method of clearing land used by large plantations, migrant farmers or shifting cultivators, often with negative associations of forest destruction.

The words we use to describe a system, even if technically synonyms, set the tone and colour the debate. Depending on perspective, gradual or abrupt changes in the practice are seen as either a solution or a problem.

In Indonesia, as elsewhere, the topic of shifting cultivation elicits strongly opposing views. The current debate on reducing emissions from deforestation and degradation adds a new layer of complexity to an already contentious issue, as the use of fire and other activities on the forest margin come to be seen primarily in the context of global emissions of greenhouse gasses and economic incentives to reduce them. The voice of local communities has yet to be heard in these debates. Swiddens are associated with subsistence and backwardness, rather than with sustainable development. But this view may reflect ignorance of the real dynamics.

We can distinguish three basic types of knowledge that need to come together: local knowledge of context, scientific perspectives on mechanisms and a public policy focus on desirable development outcomes (Figure 1).

An international group of scientists who have worked for several decades in Southeast Asia on land-use issues on the forest margin from social, economic and ecological perspectives recently reviewed the supposed demise of swiddening in Southeast Asia. That group included the authors of this volume. We aimed for a regional assessment of existing knowledge on change in swiddening throughout Southeast Asia, expecting to identify research gaps that need to be filled to address the concerns of swiddening communities. The objectives of the Asia-wide review were to

1. assess trends in the extent of swiddening and changes in land cover over past years using readily available remote sensing and map data;
2. assess the number of people engaged in swiddening using demographic and economic data from the various countries and inputs from case studies;
3. assess the impacts of swidden change on the social environment, notably livelihoods, economy and culture, using case studies and regional assessments;
4. assess the impacts of swidden change on the natural environment, notably the landscape, biodiversity, agrobiodiversity, water resources, and global climate, using case studies and regional assessments;
5. assess the importance of policy as a driver of change, including a review of commoditization, changes in scale of production, economic policy, land tenure, infrastructure, and national and subregional conservation policies;
6. provide a forum to compare research that has been done on swidden agriculture in Southeast Asia; and
7. bring new ideas and concepts regarding swidden agriculture management to policy makers in several Southeast Asian countries.

Scientists involved in the regional review held a 2-day workshop in Bogor with representatives of six landscapes in Indonesia, followed by a policy seminar. We had separate sessions with male and female farmer representatives of landscapes from Aceh to Papua and local governments and nongovernmental organizations from the same areas before comparing perspectives on issues and challenges. In the next step we compared these consolidated local knowledge perspectives with the trends seen by scientists of various disciplines and national policy makers. After covering the three corners of the triangle in Figure 1, we focused on the distinctions between spontaneous, voluntary change in land use and the situation in which outside agents try to impose change. This volume reflects the scientists’ interpretation of the key findings, concepts and issues that emerged from this consultative process. We indicate the source of information where it refers to a specific case study. We address the issues specifically in Indonesian terms but also use the synthesis of broader patterns elsewhere in Asia.
1.2 Indonesia case studies

The current synthesis was informed by participants from six landscapes in Indonesia (Figure 2, Table 1) where swidden systems are in various stages of transformation.

![Locations discussed in the current synthesis.](image)

Table 1: Benchmark areas in the current synthesis

<table>
<thead>
<tr>
<th>Area</th>
<th>Physical characteristics</th>
<th>Population density relative to resource</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halimun, West Java / Banten</td>
<td>Piedmont, penoplain</td>
<td>High, more than 1000 ps per km²</td>
<td>Swidden areas are contested between local community and the national park authorities</td>
</tr>
<tr>
<td>North and West Lampung</td>
<td>Penoplain and mountain zone; degraded landscape rehabilitation as alternative to migration</td>
<td>High, 100 ps per km²; immigration and (circular) emigration</td>
<td>Coffee-based system and other cash crops replacing paddy under fallow rotation system</td>
</tr>
<tr>
<td>Batih III Ulu, Muara Bungo District, Jambi</td>
<td>Piedmont; buffer zone of National Park (KSNP), rubber agroforests, traditional shifting cultivation</td>
<td>Intermediate (50 ps per km²)</td>
<td>Swidden areas that were initially set aside for poorer community members under village regulation, are now transformed to rubber agroforest or tree crop plantations</td>
</tr>
<tr>
<td>Sungai Mas, Aceh Barat District, NAD</td>
<td>Mountainous with steep slope, upland area</td>
<td>Low (4 ps per km²)</td>
<td>Land clearing for agriculture (intended for permanent or fallow systems) increased since the peace agreement</td>
</tr>
<tr>
<td>Danau Sentarum, Kapuas Hulu District, West Kalimantan</td>
<td>Piedmont, mountain forest, hill forest</td>
<td>Low, 3 ps per km², with Dayak (Punan, Kayan, Taman, Iban, etc) on upland and Malay on lake-basin</td>
<td>Swiddens still exists, but part of the area was transformed to become rubber and oil palm</td>
</tr>
<tr>
<td>Malinau District, East Kalimantan</td>
<td>Heavily forested, mountainous terrain</td>
<td>Low (no more than 2 ps per km²), land availability is high</td>
<td>Swiddens still exists; part of the area was transformed to become rubber and oil palm</td>
</tr>
<tr>
<td>Wamena District, Papua</td>
<td>Piedmont</td>
<td>Medium, 17 ps per km²</td>
<td>Swidden and fallow rotation systems based on sweet potato production</td>
</tr>
</tbody>
</table>
Figure 3: Some of the faces of shifting cultivation in Indonesia: (top left) swidden plot in upland area of West Aceh (credit: Hasri Mulizar); (middle left) swiddeners in West Kalimantan (credit: Abi Ismarrahman); (top right) ‘sesap nenek’, or communal land used as swidden reserve in Bungo (credit: Elok Mulyoutami); (bottom left) workshop participant from Setulang village, East Kalimantan, performs a harvest dance (credit: Jose Arinto); and (bottom right) farmers on their swidden plot in Papua (credit: Fahmuddin Agus).
2. Main trends of intensifying agriculture in space and time

2.1 Swidden transitions

‘Swiddens’, ‘shifting cultivation’ and ‘fallow rotations’ are some of the many terms for systems that alternate annual food crops and perennial vegetation in a deliberate manipulation of natural vegetation succession. Swiddens are defined here as areas cleared of woody vegetation for the temporary production of staple food crops mixed with other annuals and/or perennials for local use and/or market. Food cropping alternates with the naturally regenerated vegetation. In the original forms of swiddening, the woody regrowth reaches the forest stage with the formation of a continuous litter layer, sparse understory vegetation and accumulation of nutrients in woody biomass. These nutrients can be released again in slash-and-burn land clearing.

Throughout Asia, swidden systems are the origins of current agricultural systems, but the transformations have been such that the underlying swidden pattern may be hard to recognize. The transformation of swiddens is reversible, depending on external conditions such as price fluctuations and policy (Colfer pers. comm.). Rather than aim for a sharp delineation of ‘pure’ forms of swidden, it may be more productive to emphasize the continuity of processes and patterns, bearing in mind that evolution, either natural or socioeconomic, is a process of gradual change in response to selection pressures, not the predictable emergence of ‘higher’ forms of life.

As illustrated in Figure 4, swiddens can evolve into

1. Agroforests, in which the value of the woody regrowth equals or exceeds the utility of the annual crop phase;
2. pasture systems, in which domestic animals’ grazing of the fallows gains prominence; or
3. permanent cropping as the end point of the intensification of crop-fallow rotations, with legume cover crops or fertilizer trees, the transfer of manure from grazing systems, or the application of chemical fertilizer replacing the soil fertility functions of the fallow.

Box 1: Swiddens + fallow as a land-use system

‘Land cover’ may be simply defined as anything that is on the ground. Land cover may be observed using remote-sensing tools. It has specific spatial attributes such as vegetation and carbon and nutrient storage and forms a habitat for plants and animals. Thus, grasslands, trees, forests, deserts, cropped fields and buildings are, depending on the scale of observation, all recognizable elements of land cover. ‘Land use’ is an action humans perform on the land to meet one or more objectives. In some cases, the same words can describe both land cover and land use: pasturage, for example, is both a cover and a land use. However, land-use systems can entail a sequence of land covers. At different times, a patch of land that is part of a shifting cultivation system of land use can have as land cover a bare field, cropped field, bushy young fallow, secondary forest or even old-growth forest. Moreover, a specific example of land cover can be part of several land use systems: a cropped field can be part of a permanent cropping system, part of a long-cycle rotation or an example of any system in between these extremes (Figure 5).
Research on swiddens has often focused on the crop phase and soil fertility as dominating the cycle of use (= decline) and recovery. As emphasized by Trenbath (1989), however, the increase and decrease of crop production potential results from the interaction of soil physical, chemical and biological factors; weeds; and soil-borne pests and diseases that is not easily disentangled in its local configuration. Major differences among soil types, vegetation zones and climatic conditions complicate the interplay of factors, but the simple Trenbath (1989) model of decline and recovery is a useful starting point for understanding the dynamics.

After the cropping period, a succession of land-cover types occurs. Depending on the stage at which fallow vegetation is next cleared for a further round of cropping, we can classify the sequence of land-cover types as three land uses. If the land cover cleared is secondary forest, we can classify the land use as shifting cultivation. Likewise, if the land cover cleared is young secondary forest, we can classify the land use as long-fallow rotation. Finally, if the land cover cleared is bush fallow, we can classify the land use as short-fallow rotation. However, after clearing, the subsequent land cover, a cropped field, will be the same for all three of these land uses. This demonstrates that simply identifying a land-cover type on a plot at a particular time does not alone allow one to deduce the land use of that plot.

Figure 6: Transitions between land covers as part of fallow rotation systems (van Noordwijk et al. 1995).
2.2 Trends

The distinction between ‘shifting cultivation’ and ‘fallow rotation’ may seem clear, but in practice there has not yet been any systematic data collection. While remote sensing can identify the open field stage for cropping, the various stages of fallow regrowth gradually merge into ‘forest’, and results strongly depend on the threshold used to define it.

A number of data sets can, however, help to provide a regionally differentiated picture. Richards and Flint (1994) provided an index of dependence on swiddening across Asia, based on reconstructions of historical data from various sources. Their data suggest that by 1880 swiddening had declined to minor importance on Java and Bali and was rapidly on the way out in West and North Sumatra. One hundred years later, Papua was still highly dependent on swiddens, and East and Central Kalimantan were only just starting the transition. For the rest of Indonesia, the transition to lower reliance on swidden took place in the period 1880-1980, with the most rapid change between 1905 and 1930. This happened to be the period that rubber gained prominence as a smallholder crop (Figure 7).

Box 2: Ruthenberg’s R value

R value (Ruthenberg 1976) is the number of years of annual food crop cultivation expressed as a proportion of the length of the cycle of land utilization. The greater the R value, the more intense the land use.

\[R = \frac{\text{number of years of cultivation} \times 100}{\text{length of cycle of land utilization}} \]

The length of the cycle of land utilization = the sum of the number of years of cultivation + number of fallow years. For 2 years of food crops followed by 10 years of fallow, the R value is 16.7.

\[\frac{(2 \times 100)}{(2 + 10)} = 16.7 \]

The following table shows the length of the average fallow period in years for different values of R, depending on the length of the cropping period for annuals.

<table>
<thead>
<tr>
<th>R (%)</th>
<th>Length of a cropping period (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16.7</td>
<td>5</td>
</tr>
<tr>
<td>33.3</td>
<td>2</td>
</tr>
<tr>
<td>66.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Terminology used in the integrated natural resource management lecture note series (van Noordwijk et al. 2001) is as follows:

\[R = \frac{\text{number of years of cultivation} \times 100}{\text{length of cycle of land utilization}} \]

\[\text{Length of the cycle of land utilization} = \text{the sum of the number of years of cultivation} + \text{number of fallow years} \]

Also, if the land-use system is in equilibrium and the number of plots opened for growing food crops in any year is constant, we can derive that the fraction of the total area under crops (the land cover classification) equals the R value as well. Thus, \(R = \) the proportion of the area under annual crop cultivation as a percentage of the total area available for farming.

2.2 Trends

The distinction between ‘shifting cultivation’ and ‘fallow rotation’ may seem clear, but in practice there has not yet been any systematic data collection. While remote sensing can identify the open field stage for cropping, the various stages of fallow regrowth gradually merge into ‘forest’, and results strongly depend on the threshold used to define it.

A number of data sets can, however, help to provide a regionally differentiated picture. Richards and Flint (1994) provided an index of dependence on swiddening across Asia, based on reconstructions of historical data from various sources. Their data suggest that by 1880 swiddening had declined to minor importance on Java and Bali and was rapidly on the way out in West and North Sumatra. One hundred years later, Papua was still highly dependent on swiddens, and East and Central Kalimantan were only just starting the transition. For the rest of Indonesia, the transition to lower reliance on swidden took place in the period 1880-1980, with the most rapid change between 1905 and 1930. This happened to be the period that rubber gained prominence as a smallholder crop (Figure 7).

![Figure 7: Historical change in land use in selected provinces of Indonesia, as reflected in the index of swidden dependence based on Richards and Flint (1994).](image)
Although the Richards and Flint reconstruction involved a fair amount of ‘guestimation’, the broad pattern is reasonable. Their assessment of the 1980 situation can be compared with maps based on remote sensing.

Murdiyarso et al. (2008) presented data on the relationship between forest cover in 1990 and regency population density. In Figure 8 these data are aggregated to the provincial level. Compared to a reference line (forest fraction $= -0.132 \ln(\text{PopDens}) + 1.114$ [$R^2 = 0.63$]), a number of provinces stand out as having relatively high forest cover, especially Bali, North Sulawesi, Central Sulawesi and Maluku, while West Kalimantan, South Kalimantan, South Sumatra and Lampung stand out as having low forest cover compared with their population densities. (DI Yogyakarta is also in this category, but in other areas the cities were not included in the provincial data.) The example of Bali may be interpreted as evidence that an early shift from swidden to irrigated rice fields may have conserved its forest. Across the Indonesia data set, however, we found that the per capita area of rice fields has a neutral or negative association with relative forest cover.

Figure 8: (left) Relationship between human population density per km2 and forest cover for the provinces of Indonesia, with the main deviation between expected and observed data identified. (right) Test and refutation of the hypothesis that irrigated rice field area has a positive association with forest cover across Indonesia’s provinces.

Figure 9: Relationship between the index of swidden dependence in 1980 (based on Richards and Flint, 1994; compare Figure 7) and (A) logarithm of population density, (B) actual forest fraction, (C) human development index, and (D) rice field area per capita.
The data show that swidden dependence at this scale is negatively associated with population density and paddy rice field availability and positively associated with forest cover, and that it is unrelated to the human development indices for health, education and disposable income.

The critical population density for shifting cultivation appears to be 10-30 people km\(^{-2}\). Following Trenbath (1989), 15 people km\(^{-2}\) can be understood as 600 kilograms (kg) of rice per year per capita, a yield of 1 tonne per hectare (ha), \(R = 0.15\) (7 years of fallow, 1 year of crop) and 2/3 or the area potentially arable.

According to the swidden index of Richards and Flint, the percentage of Indonesia's population outside of areas classified as urban that are fully dependent on swidden was 1.4% in 1980, but these swiddens involved 14.2% of the area of Indonesia and 18.9% of its forest. For 5.5% of the population, 48% of the area and 58% of the forest, the swidden index was at least 0.6, indicating a livelihood strategy of swiddens mixed with other forms of agriculture. For 24.9% of the population, 80.5% of the area and 87.9% of the forest, the swidden index was at least 0.3, indicating remaining relevance of swiddens in the overall livelihood pattern. For the remaining 75.1% of the population outside of cities, 19.4% of the area and 12.1% of the forest, swiddens played a minor or negligible role in 1980. We expect that the trend of reduced dependence on swiddens has continued, but recent data compatible with that of the Richards and Flint study do not exist.

![Figure 10: Relationship between the index of swidden dependence in 1980 and cumulative area, population and forest cover in 1990.](image)
3.1 Historical and international context

The swidden system consists of a crop phase and a transition to woody vegetation as fallow or secondary forest. The direct relationship between the fraction of the area that is cropped in any year and the possible length of the fallow period implies that restricted access to the forest is a primary driver of the intensification and shortening of fallow periods in the remaining, unrestricted area. The dynamics of swiddens are therefore directly linked to the historical emergence of forest institutions that regulate access to the woody vegetation that may or may not have a history of cropping. At low population density, land is considered plentiful and production potential is determined by the amount of labour that can be mustered for clearing land.

3.1.1 Brief history of forest institutions in Indonesia

‘Forest’ derives from the Latin ‘forestis’, or ‘unenclosed’, referring to land outside of the direct influence of villages or farmers and controlled by the central government authority, often the king. It originally did not refer specifically to woody vegetation that such land may have (the Latin word ‘silva’ refers to woody vegetation and is also normally translated to ‘forest’). Timber and non-timber forest products (e.g., game) alternated over time as the prime benefits these lands provided to the authorities. With the strategic importance of large trees for shipbuilding, and hence for navies and maritime power, forest management became geared toward trees and timber.

During fieldwork in Indonesia, especially in areas with conflicts over forest delineation and local rights, we frequently hear accounts of discussions with colonial administrators before independence. An historical analysis is needed to appreciate current concerns and expectations. Dutch colonial rule in Indonesia was primarily aimed at trade, the production of export crops and political stability under local rulers who accepted colonial authority. Shipbuilding was indeed a reason to be interested in the teak forests of Java and to establish a forest authority there. On many of the outer islands, however, interest in forest areas was rather limited before 1900. In some of the more densely populated parts of Sumatra, the need for forest reserves for conserving biodiversity and/or future use was recognized. In 1865, the first forestry law for Java was introduced along with the ‘domeinverklaring’ of 1870 for outer Java, which unilaterally declared all unclaimed land, including forests, as the domain of the state (Galudra and Sirait 2006).

Due to the relatively weak position of the colonial government in most of these areas (Box 3), the delineation process involved local communities and established forest boundaries beyond the then-current economic interests of local communities. In the 1920s, a debate started on shifting cultivation as competing for land with European plantations and thus needing to be controlled.

An early expression of environmental concerns on swiddening was from Marsden (1811), who commented on the burning of a large amount of biomass for a short-term gain in ash and arable land: “I could never behold this devastation without a strong sentiment of regret. … [I]t is not difficult to account for such feelings on the sight of a venerable wood, old, to the appearance, as the soil it stood on, and beautiful beyond what pencil can describe, annihilated for the temporary use of the space it occupied. It seemed a violation of nature, in the too arbitrary exercise of power.”

1ASG researcher Andy Gillison provided an anecdote of finding clear traces of previous cropping and terrace development in what was described to him as the most pristine natural forest in Sumatra.

2Even in the middle of the 19th century, land was considered to have much less value than the control over convée labour and a small monthly stipend, as Onghokam (2003) recounts in the history of the relationship between bupatis (regency heads) and the Dutch colonial administration that had taken over direct government after the 1830 Java War.
Logging concessions often encroached upon local land and the political climate of the day did not recognize rights, but the political climate of the day did not recognize these claims, and conflicts were suppressed.

After independence, forest reserves were initially seen as part of a restrictive colonial system that prevented Indonesians' benefiting from their country's natural resources as guaranteed in the constitution. Over time, however, central authority over the forests was reestablished and, after 1965, surpassed the colonial heritage by claiming much larger areas as forest estate ('kawasan hutan'). Global demand for tropical timber, new technology and cheap transport created a logging industry under central control in conjunction with politically well-connected entrepreneurs. Logging concessions often encroached upon local land rights, but the political climate of the day did not recognize these claims, and conflicts were suppressed.

In the 1920s, the view emerged that shifting cultivation was sustainable where fallow periods were long enough but led to land degradation once a critical fallow length could no longer be maintained. This concept found its way into the international literature through parallel studies in Africa.

After independence, forest reserves were initially seen as part of a restrictive colonial system that prevented Indonesians' benefiting from their country's natural resources as guaranteed in the constitution. Over time, however, central authority over the forests was reestablished and, after 1965, surpassed the colonial heritage by claiming much larger areas as forest estate ('kawasan hutan'). Global demand for tropical timber, new technology and cheap transport created a logging industry under central control in conjunction with politically well-connected entrepreneurs. Logging concessions often encroached upon local land rights, but the political climate of the day did not recognize these claims, and conflicts were suppressed.

In 1934 the advisor Gonggrijp of the Forest Service for the Outer Islands (FSOI) issued a formal regulation on the technical procedure to be followed for forest preservation. The intention of this regulation was to address all grievances of government and local population, mainly by an elaborate process of consultation and formal documentation of agreements, prior to designation of a specific area of forest as reserve. However, the Civil Government objected to the technical procedure as it had been designed without involvement of the Government that has a final say in the area designation process. Nevertheless, the technical procedure is now generally accepted (except for Sulawesi) and various Residents issue regulations that are based on this procedure (Palembang, East coast of Sumatra, Lampung and others) as [the] basis for Memoranda of Agreement, installation of committees to settle border issues, and similar [actions].

...Mr. Gonggrijp describes as the main hindrance to the economic development of forest exploitation that there is till now no proper regulation. Also the leniency of the Central Government to the rights that the Adat communities assume to have, with support of the local civil servants. It will be important to provide more clarity than currently exists through executive prescriptions in a yet-to-be-conceived new Forest Rulings for the Outer Islands.

All forest policies for the outer Islands revolve around the legal aspects. As may have become clear from the above, the current system does not function as it should....The care issue is the neglect of the ‘domain declaration’ (Agrarian Law of 1870) by many government employees, some of whom provide fanatical support for Adat perspectives. The Government has decided to have a close look at the current agrarian system, through a Committee of Investigation (Government Decision May 16 1928, No. 17). The ‘Advice’ of this ‘Agrarian Committee’ appeared in 1930 in print and received support as well as criticism. Because of the controversy, the Government has so far refrained from expressing any opinion on the issue.

A draft forest ordinance was submitted by the Government to the Parliament (‘Volksraad’) in 1934. ...In its discussion of the draft in Parliament (‘Volksraad’) in 1935, the local representatives have nevertheless tried to put the rights of the indigenous Adat communities on the forefront. This led to a number of amendments to the draft regulation to the extent that the Government decided not to follow the decisions of the Parliament and apply the so-called long arbitration procedure (article 89 I.S.). On re-discussing the issue in Parliament in 1936, which has not yet been completed, it became clear that ‘many members’ are not susceptible to the further arguments provided by the Government. The discussions focus on article 4.1 of the draft, which prescribes the sharing of benefits of government controlled forests between the Government and the Indigenous Adat communities.

See Galudra and Sirait (2006b) for a further analysis of the ‘unfinished business’ of establishing a forest regulation prior to independence of the Republik Indonesia.

In 1998 with ‘reformasi' brought a second wave of independence sentiments to many of the forest areas and a return of the concept that local communities should benefit more from the use of local natural resources. Conflicts emerged openly. The decentralization law delegated more authority to local governments, and the 1999 Forestry Law made a distinction between ‘forest estate’ ('kawasan hutan') as a land-use designation and ‘state forest lands’ ('kawasan hutan negara') as a subset of this domain, with a legal process of verification that no other legitimate claims to the land existed. In fact, only 10% of Indonesia’s land area is legally state forest lands, according to recent counts. In the other parts of the kawasan hutan the operations of the Ministry of Forestry are in a legal grey zone.
3.1.2 Shifting cultivation is not deforestation by agreed definitions

The internationally accepted definition of ‘forest’ – in the forestry statistics of the Food and Agriculture Organization and under the Kyoto protocol rules for controlling emissions of greenhouse gasses – combines elements of vegetation, institutional control and the intention of recovery of tree growth. The internationally accepted definition of forest has two components: one that specifies canopy cover and tree height, and one that refers to the institutional framework of forestry, as it includes ‘areas normally forming part of the forest area which are temporarily unstocked as a result of human intervention such as harvesting or natural causes but which are expected to revert to forest’. (UNFCCC/CP/2001/13/Add.1 as quoted in van Noordwijk et al., 2008a)

The ‘temporarily unstocked’ part of the definition is intended to allow clear-felling and replanting as normal forest management, but the definition implies that shifting cultivation and fallow rotations are not deforestation, as long as trees achieve the specified height and canopy cover. Clear-felling for developing fastwood or oil palm plantations is possible within the forest definition, but so is land clearing followed by assisted regrowth of woody fallow vegetation. The usual listing of shifting cultivation as a driver of deforestation is thus not aligned with the internationally accepted definition of forest. As intensification reduces the crown cover and tree height of the fallow vegetation, the forest threshold is crossed and the area no longer qualifies as forest, though institutional claims that the area remains part of the forest domain may persist. In practice, however, slash-and-burn land clearing is still seen as a major threat to the economic interests of the powers that be, and environmental arguments are brought to bear on the discussion with a selective use of agreed definitions, allowing fastwood plantations to be called forest but disallowing areas with other perennial tree crops. The definition of ‘forest’ is made by ‘foresters’, rather than the other way around, where society’s definition of forests clarifies the role of various forest agents. Smallholder agroforesters still lack recognition, and they usually prefer to call their woody vegetation ‘garden’ to avoid institutional conflict with forestry institutions.

In the international debate on reducing emissions from deforestation and degradation in developing countries, it may be interesting to note that shifting cultivation, by definition, cannot be a cause of deforestation. It can, however, cause a decrease in carbon stocks, just as fastwood plantations can.

3.2 Current legal pluralism

The change in environmental conditions and the socioeconomic welfare of the people in Indonesia, including that of shifting cultivators, cannot be separated from the legal bases of control over access to land (Contreras-Hermosilla and Fay 2005, Fay and Michon 2005).

Millions of hectares of natural woody vegetation (to avoid the word ‘forest’) disappeared every decade of the 20th century, with commercial logging opening up the area and creating access, leaving in their wake Imperata grasslands or plantations owned by private companies or foreign investors. ‘Adat’ (customary) communities saw their rights limited or even lost access to the forests, lost their lands and became labourers on plantations occupying what had been their homelands under community control. Conflicts between local communities and the newly arrived investors and migrants, and between local communities and the government, have occurred in many places in Indonesia. Environmental disasters like floods and landslides are common after changes in land cover and destroy thousands of hectares of rice fields and houses. Government laws and policies in governing the natural resources tend to operate at ‘coarse’ scale, while local (adat) regulation tended to be more detailed and based on local experience.

Indonesia has 190 million ha of land. The spatial planning process has classified the lands into permanent forest land and non-forest land, with state forest lands as a subset of the permanent forest lands. Permanent forest lands, covering 120 million ha, are defined in the spatial planning process (‘rencana tata ruang wilayah’) as areas identified by the provincial government in consultation with the Ministry of Forestry as forest land. Actual tree cover is not important for the legal status of forest lands, aligned with the international forest definition, as the intention of tree planting is sufficient to classify land as forest. The permanent forest estate and the state forest lands are the responsibility of the Department of Forestry, whose governing extends to people, their adat rights and the fauna living in the area.

To sustain forests’ biodiversity while providing the country with income, the forest area is further classified into forests for conservation, protection, or production. The central government is responsible for managing conservation forests, local governments for protection forests, and timber concessions (under the supervision of the central government) for production forests. Policies are issued for each forest type, including regarding adat communities’ access to these forests.

Considerable areas outside the permanent forest estate have actual tree cover (Figure 11), but local ownership is recognized under the agrarian law. Registering land ownership in all of Indonesia, inside or outside forest areas, is the responsibility of the National Land Agency. The process of reconciling the territorial claims of the Ministry of Forestry and the registers of the National Land Agency is slow to progress, as the economic and political interests involved are considerable, even though all refer to the same 1945 constitution.

Adat forest, the forest land managed and at least in the local perspective ‘owned’ by adat communities, is found in both the ‘kawasan hutan’ and outside of it. The management of this adat forest within the kawasan hutan must, according to the Ministry of Forestry, follow rules it sets, but this is often contested by local communities. During the repressive Suharto years, there was little opportunity to express discontent or protest other than by lighting a fire, but since the 1998 reformasi conflicts have become more open and visible.
3.2.1 Customary land in the state forest land

Most of Indonesia’s land area, 63%, is supposed to be forest estate (‘kawasan hutan’). The current Forestry law (No. 41, 1999) provides the legal basis for governing forest estate but also defines a procedure to be followed before land can be claimed as such. For most of the land, this process has not been completed. According to the law, adat communities have the right to manage part of the forest estate if they fulfil the following requirements:

1. The communities are still in the form of the ‘rechtsgemeenschap’ that was recognized before Indonesia’s independence.
2. The adat area, adat institution and adat law still exist and are locally respected.
3. The adat communities still collect forest products from their surrounding forest area to fill daily needs.

The conditional acknowledgement of adat forest, adat communities and their right to manage their land creates controversy. To some, supported by a number of academics and nongovernmental organizations, this conditional acknowledgement shows the government’s efforts to restrict adat communities’ access to forest land that was traditionally theirs. The explanation of the Forestry Law, which states “in its development, due to many factors, this adat right gets weaker”, is viewed as a means for the government to unify national laws. However, Riyanto (2007, 2008) considers the inclusion of customary forest into the state forest as a consequence of the right assumed by the state in the constitution, and sanctioned by a democratically elected parliament in laws, to control forest land. This does not mean that the rights of the adat communities to manage forests are nullified. Instead, it is how the government tries to protect adat communities and existing forest from encroachers, the ones who are believed to destroy the forest for short-term gain. The debate continues (Simarmata, 2007) along similar lines as in the colonial period (Box 3).

Table 2 indicates that the government recognizes a difference between adat and other communities, based on the history of settlement. Unfortunately, the formal requirements for recognition of adat forests are quite complicated or nearly impossible to meet. So far no adat community has been able to get an official letter from the minister of forestry acknowledging the adat forest, leaving them with insecure access and tenure over adat forest.

Acknowledgement of adat community and its land is in two different authorities, ie., the local government for the existence of the community, and the central government for the forest land. The challenge is the procedure is still unclear.

During the colonial era, a specific regulation was developed for swidden agriculture (‘huma’) in West Java; Kools (1935) discussed the background of this policy that tried to balance local interest and the forest functions prioritized by the government (Galudra 2006a).

3.2.2 Customary land in non-forest land

The Agrarian Law clarifies the rules for land ownership in Indonesia, including of customary lands, and without exceptions for forest lands. This law provides people individually with different rights such as the right to own land, build on it, use it, and manage it. Unlike the Forest Law, under which adat land is considered to be state land, the agrarian law recognizes this adat land as belonging to customary communities. The local community can manage these adat lands, but individual land certificates cannot be issued. The right of individuals to manage and use the land requires a time limit, as land ownership remains collective. The government has in the past ignored the existence of adat rights and provided concessions to private companies, only to find that local claims persisted and conflicts emerged.
Table 2: Typology of the communities living in and around the forests.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Adat Community</th>
<th>Local Community</th>
<th>Newcomers/migrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have lived around the forest for generations</td>
<td>Adat law still functional</td>
<td>Have lived around the forest for generations</td>
<td>Do not live around forest</td>
</tr>
<tr>
<td>Adat law still functional</td>
<td>Use local wisdom in managing the forests</td>
<td>Do not have adat law</td>
<td>Apply modern practices</td>
</tr>
<tr>
<td>Regency law recognizes their existence</td>
<td></td>
<td>Not regulated by government law</td>
<td>Encroachers</td>
</tr>
<tr>
<td>Manage and make use of forest resources</td>
<td>Involved in the planning process</td>
<td>Have access to forest resources</td>
<td>Do not have a right to use forest resources</td>
</tr>
</tbody>
</table>

Source: Directorate General of Forest Production 2007.

Indonesia has large land areas where adat communities still practice forms of shifting cultivation. Fallow lands, often incorrectly perceived as being abandoned, do not provide much direct economic benefit when expressed as per unit of area per year, but they can provide indirect benefits such as dietary diversity, medicinal plants and insurance foods in times of stress. Issues related to adat communities and their rights remained while the following questions were not satisfactorily answered:

1. What are the various claims of these adat communities over their adat lands?
2. How can we place adat rights in the context of matters pertaining to the state?
3. What are the roles of adat rights in state affairs?
4. How can adat rights develop and adapt to current concerns about transparency and internal equity?

3.3 Returnees, migrants and ambiguity of land rights

People in Southeast Asia have a long history of migration in search of better livelihood options beyond the current domain. When land was considered plentiful, and before nation states emerged and required passports and visas, this movement was welcomed as contributing to economic growth. Many communities in Southeast Asia have a tradition that young people look ‘outside of the box’ of local opportunities, but few are as institutionalized as the ‘merantau’ tradition of outmigration in West Sumatra. Long-term bonding to the area of origin is combined with seeking livelihood opportunities outside, and the result is a constant stream of revenue and new ideas into rural areas. In some areas, the countryside is inhabited by older people who take care of their grandchildren while the middle generation of parents work in the cities. These dynamics need to be accommodated in the local rights system. In the Kerinci valley, for example, young women must declare, before they leave for jobs abroad, their intention to return and take their share in rotational rice field rights in the existing matrilineal inheritance system.

For people from densely populated Java, Bali, South Sulawesi, or North or West Sumatra, merantau can bring them to less densely populated areas, where opportunities still exists to create a new forest margin. In some cases, they enter the local communities as temporary labourers, sharecroppers or share-tappers in the case of rubber and gradually acquire land within local institutions. This can be accommodated but may become problematic if conflicts between the state and the local communities arise. In other cases, local entrepreneurs sell certificates that appear to convey land rights to newcomers who find out later that there are multiple other claimants to the land. The ASB research program documented such cases in its North Lampung benchmark. Many people can claim that their grandmother or grandfather once had a shifting cultivation plot in a certain area (Box 4 on page 18).

Merantau maintains low population densities in the heart of Borneo, the inland parts of West and East Kalimantan. People prefer to work abroad in Malaysia to find better living conditions, educational opportunities and healthcare. In the more accessible parts, pressures on land tend to increase from immigration (Colfer and Dudley 1997), whether spontaneous or state-sponsored. Privately held plantations obtain access to land often without the free and prior informed consent of the local community. Where the local people do not want to become labourers on what used to be their own land, external labour is brought in, which may attract new settlers. The space for swiddens as a land-use system can rapidly disappear under such circumstances (Box 5).
Box 4: Relocation of the Punan Tubu in Malinau Regency, East Kalimantan

Punan groups from the Tubu moved into the Malinau river basin and the environs of Malinau city in the early 1970s (Levang et al. 2007). This movement was stimulated by the state because development cannot reach the remote areas. The state moved eight villages from the forest to areas in reach of the Regency capital. Punan people originally were forest dwellers who depended on forest products as hunter-gatherers, while some of them also practiced traditional swidden systems. The new location with different physical conditions induced the Tubu to become more sedentary and intensify their farming system. With a limited amount of land, the price of land rose. Meanwhile, restrictions on Tubu people’s clearing forest were imposed by the native Tidung community. In response many of the Tubu came to depend on off-farm activities such as logging and mining. Many young Tubu prefer to go abroad to find better work and more access to markets.

Box 5: Population mobility and land-use change in North Lampung

North Lampung was the last part of the province to become a major destination for migrants, state-sponsored transmigrants (many of them resettled ‘squatters’ from the forest zones elsewhere in the province) and spontaneous migrants. The percentage of people not born in the province increased from 4% in 1961 to 31% in 1986. During the 1980s, issues of land tenure and ownership became contentious, as communal land (‘tanah marga’) was used for transmigration, logging concessions, and the development of sugarcane, rubber and fastwood plantations.

Until early in the 20th century, the Tulang Bawang river and the town of Manggala, which controlled its trade, had been an important part of the province and formed the border between areas controlled by Palembang in South Sumatra and Banten. Land along the river was intensively used but graded into forests with low-intensity use for shifting cultivation. As land was sufficient, there was no strong need to clarify boundaries between villages.

North Lampung province was part of the logging frontier of the early 1980s, and land rights were obtained from the local village leadership with the promise of connecting the area to the plantation economy. The local rights of community members to land that their parents or grandparents had cropped were disregarded. The transmigrants were provided legal title to land (2 ha per household), even though it had previous claims to it. The transmigrants learned quickly that most of the land was not suitable for the permanent crop production that was promoted as modern agriculture, and that the local tradition of growing tree crops such as rubber made more sense. Parts of the landscape could be converted into irrigated rice fields and rapidly increased in value. Many of the transmigrants became seasonal labourers on the sugarcane plantation, until that had to stop over the land rights conflicts that erupted after 1998. Many of the resettled transmigrants left, and mortality in the early years of hardship was high. The cropping system of the transmigrants became essentially a rotation of cassava with Imperata fallow. Soil fertility was low, and the incidence of runaway fires high. Shifting cultivation based on upland rice stopped when transmigration settlement and plantation development came to the area.

Spontaneous migrants also entered the area and started as share-croppers on land owned by others. Spontaneous migrants who could afford it, and transmigrants who wanted more than their allotted 2 ha of land, bought land—often to find out later that the seller was not the only claimant to it. The resulting conflicts sometimes escalated to an intercommunity scale and stimulated the migrants to move on and try their luck once more in the mountains of Sumatra, where coffee can be grown on more fertile soils.

3.4 National parks

Forestry Law No 41 (1999) defines ‘conservation forest’ as areas set aside to sustain biodiversity. A national park is part of conservation forest, defined in Forestry Law No 5 (1990) as one with its ‘original ecosystem’ and under a system of zoned management intensity for the purposes of research, education, science, cultivation, tourism and recreation.

Like ‘production forests’ and ‘watershed protection forests’, national parks are surrounded by people, including adat communities whose lives depend on their surrounding resources. Many social, economic and environmental problems stem from the rules and the way boundaries are set and maintained. National parks are normally divided into management units, with the sanctuary zone as the most restricted, allowing no human activity and requiring specific permits for research. The ‘traditional use’ zone of a park allows continued traditional land-use practices by local communities, as long as they respect rules for protected plants and animals.

There are about 50 national parks in Indonesia with a total area of over 10 million ha. The Lorentz National Park in Papua is the largest, covering more than 2.5 million ha, and the Kelimutu National Park in Flores is the smallest, at 5,000 ha. National parks are supposed to be the last fortresses of nature but face a similar threat as other forests of being encroached and logged illegally. Parks have become in many cases the place for illegal loggers and their political protectors to get high-quality timber. The national parks Gunung Leuser in Nangrooe Aceh Darussalam, Bukit Barisan Selatan in Bengkulu, Kutai Timur in East Kalimantan, and Gunung Halimun Salak are examples of challenged parks.
The Kutai Timur National Park has an area of 198,629 ha. The signboard announcing ‘prohibition to cut trees, to hunt, and to burn’ stands next to the houses of the encroachers, and cellular telephone masts support the needs of squatters throughout the park. About 40% of the park has been destroyed, mostly by migrants from other islands who have formed seven villages with a total population of 24,000 and received government administrative support. Some Dayaks are also involved in cutting trees in the national park. A Wehea Dayak, 40-year-old Simon David, said: “Jika tak ikut menebang hutan kita akan dihabiskan pendatang dan kita tidak mendapat apa-apa (If I don’t cut the forest, it will be finished by the migrants and I’ll get nothing).” This shows that, to some Dayaks, their noble principal ‘manyalamat petak danum’ (save the land and water for future generations) does not exist anymore (Arif and Saptowalyono 2008). Road construction that was meant to open access to isolated areas attracts people who move in and build a house or farm along the road.

The Bukit Barisan Selatan National Park, measuring 356,800 ha, has been logged illegally since the issuance of permit for a timber forest concession adjacent to the park. The establishment of ‘hit and run’ coffee gardens is another problem the park faces, with slash-and-burn methods used for establishing the gardens. The Gunung Halimun Salak National Park, measuring 113,357 ha, has also suffered many socioeconomic and environmental problems since its designation in 2003 as a national park for ecosystem richness and hydrological function. About 108 villages and 317 sub-villages were included in the park at its establishment, and residents’ rights to land remain unclear (Galudra 2003a).

Before it was designated a national park, the Mount Halimun-Salak forest was under the management of Perhutani, the state-owned forest company. Perhutani focused on the production forest zone and allowed the communities living in and around the concession area to farm under the community-based forest management (Pengelolaan Hutan Berbasis Masyarakat or PHBM) program of forest management by local communities agreed between Perhutani and the local communities. The concession, as it was set by Perhutani rules, taxed local communities for 25% of the yield from ‘forest’ land, even if it was terraced rice paddies. Designation part of this PHBM area to be a national park, as an enlargement of Gunung Halimun Salak national park, frightened the local communities for their PHBM activities would be restricted. Designation as a national park was seen by villagers as infringement on their customary rights. The local practice of shifting cultivation became the core of the conflict. In early 2008, the head of Lebak Regency pleaded to the national legislature to exclude 15,000 ha of land from the designated national park. Negotiations continue (Galudra 2008).

The many national parks apparently do not secure conservation. A set of 21 national parks was recently selected to become ‘model national parks’ based on features such as high potential to attract visitors, high biodiversity, and well-established positive interaction with surrounding communities. Unfortunately, no clear guidelines yet exist on how these model parks should be managed, leaving park managers to interpret the decree on their own.
4. Evolution of the crop phase

4.1 Agrobiodiversity

Depending on local tradition and preference, swiddens can have rice, cassava, sweet potato, beans and other crops as the main component. Swiddeners usually grow several varieties of upland rice for various purposes. For example, in the Iban Dayak village of Semalah, West Kalimantan, rice and glutinous rice (‘pulut’) have a central place both for daily consumption and for customary healing, burial and other rituals. Glutinous rice is important for making traditional wine and as a symbol of wealth in most Dayak communities (Figure 12). Different rice varieties differ in taste, texture and vulnerability to pests (Box 6).

Box 6: Various species of upland rice: taste and texture

Rice varieties offer different advantages. Some are highly resistant to insect pests and diseases. Some are firm while others are soft, and some are fragrant while others are not. Some rice varieties found in West Kalimantan as described by the Punan Dayak are in Table 3.

<table>
<thead>
<tr>
<th>Paddy type</th>
<th>Properties</th>
<th>Taste</th>
<th>Yield</th>
<th>Used</th>
<th>Disease resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yase</td>
<td>Fragrant, short grain</td>
<td>Good</td>
<td>Medium yield</td>
<td>Consume on special occasions</td>
<td>High resistance to disease</td>
</tr>
<tr>
<td>Kuning</td>
<td>Long grain, hard</td>
<td>Not really good</td>
<td>High yield, good for food security</td>
<td>Daily consumption, but as a last resort</td>
<td>High resistance to disease</td>
</tr>
<tr>
<td>Meter</td>
<td>White, long grain</td>
<td>Very good</td>
<td>Low to medium yield</td>
<td>Consume on special occasions</td>
<td>Low resistance to disease</td>
</tr>
</tbody>
</table>

Figure 13: Some paddy varieties found among the Punan Dayak on the Upper Kapuas river, (left) Meter, (middle) Kuning, (right) Yase. Photo credit: Elok Mulyoutami 2008.
Swidden systems in Papua are usually based on sweet potato as the primary staple. Sweet potato cultivation has a social and cultural value for farmers in the Dani an ethnic group in West Papua. Widyastuti (2000) mentions that farmers can achieve high status through a number of strategies associated with deploying sweet potato diversity in their gardens. Sweet potatoes provide food security directly and through use as pig feed (Box 7).

Many swiddeners plant more than one rice variety and sometimes combine rice with other crops on their swidden field. This may have high cultural value for the swiddeners, particularly for most of Dayaks in Kalimantan (Box 8). Moreover, intercropping miscellaneous crop varieties on a single piece of land is a strategy of spreading risk to cope with the loss of any particular crop pests or disease. In the paddy-based swidden system, different species of rice may have different resistance to pests and disease. For instance, ‘hama wereng’, or planthopper, likes only some rice varieties. Farmers know which rice varieties have high resistance to disease and pests. This fact is supported by Iban Dayak who are involved in community development programs managed by a local nongovernmental organization and issued this statement:

Bagi masyarakat dayak, berladang itu penting, bahkan proses menanam padi di ladang itu harus dilakukan berurutan dan jenisnya juga beragam, kalau tidak mengikuti aturan adat, panen bisa gagal, dan juga ada hukumannya… panen bisa gagal jika hanya satu jenis padi saja yang ditanam, sebab jika semua terserang hama ya mati semua… tapi kalau tanamannya beragam, ada yang kuat sama hama ada juga yang tidak… jadi kemungkinan gagal panen bisa berkurang.

(Swiddening is very important for local Dayak people. Crop planting must follow the established pattern with different rice varieties…. If we don’t follow the rule, rice cultivation may fail…and also there are forms of punishment…. Harvests can fail if only one variety is used in a swidden. If a pest attacks, the paddy will die, but if we plant more than one variety, some of the rice could be resistant to the pest attack and the possibility of total harvest failure is diminished.)

Box 7: Diversity in sweet potato

Sweet potatoes come with many shapes, skin and flesh colours, maturity periods, and flavours. In a recent interview, a farmer in Wamena, Papua, could identify at least 20 different types that have recognizable properties and were planted in a new field. Sweet potatoes are harvested daily to meet current demand, making the field a storehouse as well as a production venue. Sweet potatoes are used for direct human consumption but also as feed for the pigs that provide protein, status and the wherewithal for traditional ceremonies. Varieties have distinct names and are identified by the colour of the flesh and skin (e.g., purple skin + white flesh, or purple throughout). Some varieties are and especially appreciated by children, and others are used primarily for pigs. Planting patterns in each new crop field maintain this diversity, which buffers risk from uncertainties regarding weather, pests and disease.
Swiddening is the traditional way of life for the Iban Dayak in the village of Semalah, West Kalimantan, as it is for most others in Kalimantan. Iban Dayak have a bilateral inheritance system by which children inherit land from both parents. Land can be used for hunting and gathering, as swidden or as conservation area. Nowadays, 20 years is a typical fallow period for most Iban in West Kalimantan, though it is the girth of trees, rather than their age, that is used as the indicator (Wadley 2007). Clearing the forest using slash and burn is done to make the soil more fertile, as it is inherently acid. They use firebreaks—strips of lands around the fields cleared of vegetation (locally called ‘ilaran api’)–to control the spread of fire. Groups of farmers use fire to clear land using a circular pattern for control at the forest margin and lighting fires against the wind direction to avoid uncontrolled spread. Iban Dayak people consider it a disgrace if fires spread to adjacent fields, which brings serious punishment.

Farmers plant a number of upland rice varieties on the same plot in a single planting season. The Iban Dayak in Semalah have about 30 local rice varieties, some for wet, swampy fields and others for dry. They also plant glutinous rice. The intercropping tradition has been retained over generations (Table 4, Figure 15), and each family maintains its own seed bank. Pun paddy is a sacred paddy for most of the Iban Dayak on Borneo, including the Iban in Sarawak. For the Iban, this type of paddy plays an important role as a symbol of family persistence, as it can recall the origin of the family (Padoch, pers. comm.). Each family has different types of Pun paddy. Pun paddy is usually planted first and protected by Sangking paddy. Both Pun and Sangking paddy have high cultural value as symbols of wealth.

Using multiple varieties in one plot is a strategy to avoid dramatic harvest failure from pests or disease. Iban farmers who participated in a workshop said that planthoppers usually attack only specific rice varieties, and that other varieties will still provide rice. This aspect of traditional swidden management by the Iban Dayak in Semalah, based on cultural values, contributes to their food security.

<table>
<thead>
<tr>
<th>Category</th>
<th>Planting pattern</th>
<th>Variety</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pun, sacred strains paddy</td>
<td>Planted first after clearing land and always in the first row</td>
<td>Antu, Joarin</td>
<td>First priority, as a source of paddy cultivar, wealth and continuity symbol</td>
</tr>
<tr>
<td>Sangking</td>
<td>Plant after Pun in the second row</td>
<td>Jahe, Junti, Kenawit</td>
<td>Secondary priority for ceremonials</td>
</tr>
<tr>
<td>Other variety</td>
<td>Planted well in the swidden area, not on border</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Pulut or glutinous rice</td>
<td>Usually planted on swidden border.</td>
<td>Jamai, Sawa Kjang</td>
<td></td>
</tr>
</tbody>
</table>

Figure 14: Planting pattern of local paddy inside swidden area.
Echoing the situation with the Iban Dayak in West Kalimantan (Box 4), research by Zhu et al. (2000) in China’s Yunnan province shows that crop diversification by intercropping local and improved rice varieties controls disease better than does monoculture.

Farmers actively conserve the diversity of local upland rice varieties and select the highest-quality seed from previous harvest, storing it in airtight boxes to avoid rot and insect damage. Farmers intercrop their field with many varieties of crops to suppress weeds, prevent erosion and buffered risk. Traditional seed conservation supports the continuous adaptation of local varieties to changing circumstances. Benuaq Dayak farmers in East Kalimantan use the centre of the swidden as the nursery area, or ‘pukaatn bini’. The species used for pukaatn bini can include bamboo, ‘serai’ (*Cymbopogon nardus*), ‘kunyit’ (*Curcuma domestica*), ‘lenjuang’, ‘nenas’ (*Ananas comosus*), ‘engkudu biang’ (*Fragaea racemosa*), ‘peleheet’ (*Randia* sp.), and ‘tuba’ or ‘tuap’ (*Derris elliptica*) (Mulyoutami et al. 2008).

4.2 Local ecological knowledge

Local communities’ natural resource management and farming traditions reflect landscape conditions and gradual learning. Farming started in small openings in the forest, complementing the collection of forest products, hunting and fishing. Swiddens in the forest area created temporarily fertile soil and were initially associated with temporary settlements, usually near a river used for transport and as a source of fish protein. Market integration meant that crop diversity increased when rubber, rattan, coffee and/or cinnamon were added to the food crops in the swidden. When this worked well, cash crops could permanently replace the swidden system with the establishment of a sedentary farming system. Other permanent farming systems, such as those based on flooded rice and palm oil, were imported in that form and did not gradually evolve locally.

Traditional or customary rules combine maintenance of swidden productivity with environmental and ecological concerns. However, in practice, not all swiddeners follow their customary rules.

Some examples of swiddeners’ local knowledge are as follows:

- Give priority to old secondary forest to maximize the harvest without disturbing the succession process.
- Avoid wildfire by using firebreaks, accounting for wind direction and slopes, keeping an eye on the fire.
- Work together with manual tools and without mechanization, and use green fertilizers and green pesticides.
- Use different local varieties of rice, including glutinous rice.
- Follow fallow and rotation principles to let the soil recover and maintain fertility.
5.1 Two intensification pathways

More intensive use of plots can increase the total output per ha from shifting cultivation, trending toward permanent cropping with annual food crops, but there may be diminishing returns on labour. Intensification can also cause land degradation and abandonment, as indicated by the interrupted arrows in Figure 15. Agroforestry options and systems based on tree crops can allow high total output per ha with annual food crops grown at low intensity (van Noordwijk et al. 1996).

5.2 Nutrients

Farmers have relied on swidden systems with long fallow periods to produce food crops for their subsistence. The system is ecologically stable only under very low human population density. In recent decades, however, rapid population growth, escalating market demand for agricultural produce, and government policies encouraging land development and settlement have transform swidden into more intensive land-use systems (Myers and De Pauw 1995). The transition has caused negative balances in nutrients because mineral nutrients lost during cultivation can no longer be restored by the shorter bush fallow period (Juo and Manu 1996). The current focus is on how to assist the remaining swiddeners in their adoption of more intensive farming.

Many farmers still use slash and burn to clear the land despite the government’s promotion of zero burning. From the study in Sumatra, Ketterings et al. (1999) reports that farmers’ preference for burn is because it

1. is a fast and efficient way to clear forest;
2. can suppress weeds and other wild vegetation, especially early in the cycle after planting;
3. turns biomass into a useful natural fertilizer;
4. loosens and crumbles the soil, allowing seedlings to become established quickly; and
5. is an effective way to kill pests and pathogens (Figure 16).

Figure 15: Schematic relationship between the intensity of annual cropping (Ruthenberg’s R) and the total economic returns per unit of labour (left) and land (right). Positions of the land-use systems are approximate and depend on the relative value of forest products and annual food crops (van Noordwijk et al. 1996)
5.2.1 Nutrient accumulation during the fallow period

The fallow accumulates mineral nutrients from the soil into the fallow bush and forest biomass. The accumulation of nutrients in plant biomass is affected by soil fertility and crop species. When compared, relatively fertile Inceptisol soil accumulated considerably more nutrients than the less fertile Oxisol (Table 5). A 2-year *Piper aduncum* fallow accumulated twice as much nitrogen (N), three times as much phosphorous (P), almost seven times as much potassium (K) and twice as much calcium (Ca) and magnesium (Mg) than did a 2-year *Imperata* fallow. Table 5 also shows a trend of progressively reduced recovery of the total nutrient stock than occurs in the original primary forest because of the loss of mineral nutrients during burning and cultivation (Juo and Manu 1996).

5.2.2 Fire effects on nutrient supply

Burning converts vegetation biomass into a layer of nutrient-rich ash on the soil surface, and rainfall and cultivation incorporate these nutrients into the soil (Nye and Greenland 1960). Along with the incorporation, changes in surface soil chemical properties take place, including an increase in soil pH and nutrient availability. Heat also affects soil fertility but the effect is hypothesized as smaller than the ash effects (Giardina et al. 2000a).

Besides supplying nutrients, burning paradoxically causes significant, and seemingly the greatest, nutrient loss of any forest disturbance (Dechert et al. 2004). Fine plant materials such as leaves, twigs and small branches contain higher nutrient concentrations than do larger branches, trunks and stems. These fine materials dry quickly following the slashing of forest or fallow vegetation and are the components most readily burned (Kauffman et al. 1993). The percentage of nutrients above ground that were returned to the soil as ash are, on average, 3% of N, 49% of P, 50% of Ca and 57% of K (Giardina et al. 2000a; comparison of Table 6 and Table 5).

Biomass burning causes rapid increases in soil pH, available P, exchangeable bases and cation exchange capacity (CEC) in surface soils (Table 7). In acid soils, ash reduces the level of soluble and exchangeable aluminium (Al) (Andriesse and Schelaas 1987; Sanchez 1976). The chemical composition of the ash and inherent soil fertility determine the changes in soil chemical properties. On acid soils, these changes are very beneficial in increasing the CEC, but this increase is usually short lived, as the cations can easily be lost through leaching, crop removal and erosion, perhaps leaving the soil to acidify again (Figure 17, Table 8) (Juo and Manu 1996).

![Figure 16: Reasons for using fire to clear land, as reported by small-scale rubber farmers in Sepunggur, Sumatra; modified from Ketterings et al. (1999).](image-url)
Table 5: Nutrient content in the biomass of secondary forest and fallow plants

<table>
<thead>
<tr>
<th>Site description</th>
<th>Nutrients (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Secondary forest, Nam Phrom, Thailand; annual rainfall 1500 mm</td>
<td>1567</td>
</tr>
<tr>
<td>(Kyuma et al. 1985)</td>
<td></td>
</tr>
<tr>
<td>Secondary forest, San Carlos de Rio Negro, Oxisol (UhI and Jordan 1984)</td>
<td>1722</td>
</tr>
<tr>
<td>2-year fallow of Piper aduncum, Papua New Guinea; rainfall 3000 mm (Hartemink 2001)</td>
<td>222</td>
</tr>
<tr>
<td>1-year fallow of Glicidium sepium, Papua New Guinea (Hartemink 2007)</td>
<td>356</td>
</tr>
<tr>
<td>2-year Imperata grassland, Papua New Guinea; rainfall 3000 mm (Hartemink 2001); data approx. from graph</td>
<td>100</td>
</tr>
<tr>
<td>1-year Imperata grassland, Papua New Guinea; rainfall 3000 mm (Hartemink 2007)</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 6: Estimated nutrient inputs (kg ha⁻¹) from ash at different locations

<table>
<thead>
<tr>
<th>Sources</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yurimaguas, Peru, secondary forest (Sanchez 1976)</td>
<td>3</td>
<td>10</td>
<td>76</td>
<td>730</td>
<td>66</td>
</tr>
<tr>
<td>Nam Phrom, Thailand, secondary forest (Kyuma et al 1985)</td>
<td>67</td>
<td>72</td>
<td>455</td>
<td>3373</td>
<td>288</td>
</tr>
<tr>
<td>Lua, Thailand (Zinke et al. 1978, cit. Giardina et al. 2000b)</td>
<td>10</td>
<td>nd</td>
<td>24</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>Para, Brazil, 7-year-old bush (Mackensen et al. 1996, cit. Giardina et al. 2000b)</td>
<td>5</td>
<td>3</td>
<td>22</td>
<td>112</td>
<td>15</td>
</tr>
</tbody>
</table>

nd: not determined

Table 7: Changes in soil fertility before and 1 month after burning at selected sites (adapted from Kyuma et al. 1985, Juo and Manu 1996, Giardina et al. 2000a).

<table>
<thead>
<tr>
<th>Site</th>
<th>Time</th>
<th>pH</th>
<th>Available P (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nam Phrom, Thailand, secondary forest</td>
<td>Before</td>
<td>6.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>7.2</td>
<td>7.7</td>
</tr>
<tr>
<td>Nam Phrom, Thailand, old forest, 0 5 cm</td>
<td>Before</td>
<td>6.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>7.2</td>
<td>44.4</td>
</tr>
<tr>
<td>Lua, Thailand, secondary forest, 0 5 cm</td>
<td>Before</td>
<td>6.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>6.7</td>
<td>10.0</td>
</tr>
<tr>
<td>Yurimaguas, Peru, primary forest</td>
<td>Before</td>
<td>4.0</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>4.7</td>
<td>23.7</td>
</tr>
<tr>
<td>Mexico, primary forest, 0 2 cm</td>
<td>Before</td>
<td>6.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>8.0</td>
<td>32.0</td>
</tr>
</tbody>
</table>
Figure 17: Effect of oven heating (for a variable number of minutes (min) in ovens maintained at various temperatures) of unburned forest soil (05 cm) on Bray-1 P 1 day and 4 weeks after exposure. Standard errors of difference are 5.1 for 1 day and 3.6 for 4 weeks. Error bars represent standard deviations. Modified from Ketterings et al. (1999).

Table 8: Soil chemical properties at a secondary burn site with and without ash addition; cations are measured in centi-mol of charge, cmol, per kg of dry soil

<table>
<thead>
<tr>
<th></th>
<th>C (g kg⁻¹)</th>
<th>N (g kg⁻¹)</th>
<th>Bray-1 P (mg kg⁻¹)</th>
<th>Exchangeable cations</th>
<th>Alsat.</th>
<th>pH H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca Mg K Na Al Σ</td>
<td></td>
<td>Ca Mg K Na Al Σ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before burn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without ash</td>
<td>53.8 4.2</td>
<td>36.6</td>
<td>1.2 0.6 0.3 0.05 3.5 2.2</td>
<td>55 4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with ash</td>
<td>50.4 4.6</td>
<td>78.2</td>
<td>4.3 3.5 2.4 0.11 0.4 10.3</td>
<td>4 6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.d.</td>
<td>6.8 0.5</td>
<td>11.0</td>
<td>0.5 0.4 0.3 0.01 0.4 1.1</td>
<td>6 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 wks after burn:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without ash</td>
<td>48.2 4.7</td>
<td>59.1</td>
<td>1.4 0.6 0.4 0.06 1.6 2.6</td>
<td>34 5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with ash</td>
<td>50.4 4.6</td>
<td>78.2</td>
<td>4.3 3.5 2.4 0.11 0.4 10.3</td>
<td>4 6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.d.</td>
<td>6.8 0.5</td>
<td>11.0</td>
<td>0.5 0.4 0.3 0.01 0.4 1.1</td>
<td>6 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 wks after burn:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without ash</td>
<td>49.1 4.6</td>
<td>46.7</td>
<td>2.4 1.2 0.2 0.01 1.0 3.9</td>
<td>18 5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with ash</td>
<td>41.6 4.8</td>
<td>53.8</td>
<td>3.8 2.4 0.7 0.02 1.5 6.9</td>
<td>22 5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.d.</td>
<td>3.5 0.6</td>
<td>12.6</td>
<td>1.3 0.8 0.2 0.01 0.7 2.3</td>
<td>12 0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Σ = sum of bases (Ca, Mg, K and Na), Alsat. = aluminium saturation (% of the total amount of exchangeable bases including Al and H), s.e.d. = standard error of
Box 9: Is it the ash or the heat that increases soil fertility?

(Based on Ketterings et al. 1999)

When forests are converted into agricultural fields, especially when fire is used to clear land, part of the P in the vegetative biomass is lost as particulates are carried into the atmosphere and deposited beyond the burning field, contributing to the fertility of neighbouring sites. The remainder is initially deposited on top of the soil as components of the ash or partly burned organic material. Some of the ash may be lost from the site through erosion, accumulating in terrestrial or aquatic sedimentation zones, while the remainder will enter the soil. Fire may also release P from various soil pools. As organic matter burns, microbial biomass is killed, resilient organic P forms mineralize, and occluded inorganic forms may become more available. Phosphorus that enters the soluble P pool may be taken up by plants, chemisorbed to the surfaces of iron (Fe) and Al oxides, or retained and stored as relatively insoluble Al and Fe phosphate precipitates. The overall effects of fire on the soil P status reflect the combination of inputs from aboveground biomass and the effects of heat and ash on existing soil P pools. These effects should be understood and addressed in the development of successful alternatives to slash and burn on the P-deficient Oxisols of Sumatra.

Most studies have credited the apparent increase in soil fertility to ash addition per se, but our field study in Sepunggur—which a pile-and-burn fire with ash addition was compared to a similar fire in which the ash was blocked from entering the soil by zinc plates—showed that direct heat exposure caused an increase in Bray-1 P accompanied by a reduction in Al saturation and a pH increase 2 weeks after the burn. Eight weeks after the burn, Bray-1 P levels were still elevated, but differences were no longer significant. Carbon (C) and N contents remained unaffected by the ash and the heat, except for a reduced C level in the ash addition treatment 8 weeks after the burn. Ash addition was responsible for gains in exchangeable bases 2 weeks after the burn (Table 6 and Table 8). Eight weeks after the burn, exchangeable base levels for the ash treatment were still elevated but no longer significantly different from preburn levels. An oven experiment in which unburned forest soil 05 cm deep was exposed to static heating revealed that short-term heating, for 0 and 205 minutes at 100°C, increased Bray-1 P levels, but heating at higher temperatures or a long, 1149-minute exposure at 100°C resulted in a smaller increase or even a decrease in Bray-1 P (Figure 17). Field experiments in Jambi (Ketterings 1999) showed that high-intensity fires of >500°C caused net losses in available P, measured as Bray-1 P. Medium-intensity fires of 250-500°C led to a small gain in Bray-1 P, while low-intensity fires of <250°C resulted in large increases. Ash addition was responsible for the increase in available P directly following the low- and medium-intensity burns, but at high intensity the positive effects of ash addition were outweighed by the negative effects of direct heat exposure.

5.2.3 Nutrient removal and dynamics during cultivation

Swidden crop cultivation takes advantage of the nutrients supplied by burning and from the soil nutrient reserve. On less fertile soils, the cropping period lasts only for 12 rice crops, and a 7-15 year fallow is needed to restore soil fertility for supporting the following crop. On more fertile soils such as in Sulawesi, soil fertility could be maintained at a reasonable level for 4-5 years of crop production (Dechert et al. 2004).

The amount of nutrients that typically accumulated in rice grain and straw, fresh bunches of oil palm, and rubber latex is presented in Table 9. For rice, crop removal at harvest may include both the grain and straw or just the grain, with farmers leaving the straw to decompose on the soil surface or burning it. The removal of straw affects K and Ca balance in acid, low-CEC soils because of the high concentration of these nutrients that it contains. Under continuous cultivation, about the same amount of nutrients removed during harvest need to be replenished to maintain the total nutrient stock of the system.

N and P are concentrated in the rice grain. In most areas, regardless of straw management, substantial amounts of P and N are removed. Their replenishment during the fallow period is thus the key to successful crop production.

When the system transforms into permanent agriculture, the use of organic matter, inorganic chemical fertilizers or a combination of both are necessary to support satisfactory crop production (Juo and Manu 1996, Sanchez 1976, Cramb 2005). In many cases, especially on sloping upland, the use of a shrub hedgerow is recommended to control erosion (Agus et al. 1997 and 1999). This is less important on flatlands, as the cost of hedgerow establishment and maintenance cannot be offset by nutrient recovery (Lal 1991).

In general, we can conclude that traditional swidden systems inherently supply enough nutrients to support crop production. However, at the same time, burning the biomass under the slash-and-burn system volatilizes substantial amounts of nutrients, especially N and P. As the fallow period shortens, the systems suffer negative nutrient balance, requiring external inputs. Various managed-fallow systems alleviate the systems’ dependence on external inputs..
5.3 Imperata as a sign of overintensification

Imperata cylindrica (‘alang-alang’ or ‘cogon grass’) is an efficient colonizer of open spaces on a wide range of soils. Once it has established its rhizomes, the grass is tenacious and can survive repeated fires, which usually do not kill the growth tips of the leaves at the surface level. Even if they do, *Imperata* still has the capacity to regenerate from buds on rhizomes in deeper soil layers and establish ground cover again before most other plants. This capacity to rapidly regenerate from rhizomes allows the grass to survive soil tillage, unless a repeated cycle of ploughing, drying the soil and reploughing is used. The ecological success of *Imperata* has given it a reputation as one of the world’s 10 worst weeds, even though it provides cover to soils that otherwise would become badly eroded. While fast-growing leguminous cover crops such as *Mucuna pruriens* can allow initial control, they may not provide enough sustained shade to reduce the vigour of *Imperata* rhizomes (Hairiah et al. 1993).

The first steps in controlling *Imperata* in the agroforestation of grasslands can be achieved by either mechanical or chemical control. Farmers employ a herbicide, soil tillage or ‘pressing’, depending on their resources and the current cost of the technique (Purnomosidhi et al. 2005). Food crops can be grown within the first few years of planting most tree crops or agroforestry systems to maintain income and pay for the suppression of *Imperata* regrowth. However, the gap between the last food crop interplanting and canopy closure creates a major risk of *Imperata* regrowth and fire occurrence.

Four aspects of Imperata can influence the growth and performance of trees, though other mechanisms remain debated in the literature:

1. **Light capture by grass 12 m high affects small trees.**
2. **The grass’s capture of water and the nutrients N, P and K reduces what is available for trees.** Nitrogen concentration in the foliage is quite low, such that the competition for N not excessive. The subsequent decomposition of Imperata leaf and root residues involves microbes’ immobilizing mineral soil nitrogen, further depleting generally poor soils.
3. **Fire is a risk in dry periods,** as the dry biomass above ground is a well-connected, well-aerated fuel that readily burns and spreads. While Imperata itself survives such fires, and may benefit from their nutrient mobilizing before other plants respond, trees’ survival depends on their size, the height above the ground of the growing tips, the thickness of the tree bark that protects lateral buds, and such qualities of the fire as the height of the flames, the temperatures reached, and whether or not the fire spread to the tree crown.
4. **The roots and rhizomes of Imperata release organic compounds that inhibit the germination and early growth of many plant species.** These compounds tend, after the establishment phase of other plants, to stiffen N-immobilization in *Imperata* soils. Enriching the soil with nitrogen can alleviate this allelopathic effect.

Fire is, in practice, the most problematic consequence of the presence of Imperata in agroforestry systems, because a single fire can destroy several years’ investment in establishing trees. Control of Imperata is thus an important prerequisite for tree establishment. Four types of control have been developed in practice:

1. **Mechanical control.** Soil tillage that exposes the rhizomes to the sun and dries them out has to be repeated several times to be effective, as some of the rhizomes may survive below the usual depth of hoeing or animal-drawn ploughs. Mechanized ploughing can reach the required depth.
2. **Herbicide.** The most popular and cheapest herbicide is currently glyphosate, which is available under a range of trade names.
3. **Pressing.** Pressing the biomass above ground has a remarkable slowing effect on regrowth through mechanisms that are not fully understood. The technique can be used selectively around newly planted trees (Murniati 2002).
4. **Shade.** Shade reduces the growth rate and, in combination with removing the biomass above ground,
representative, said:

of women foresters, who was also a Kasepuhan community participant from Rimbauan Muda Indonesia, an organization have a swidden plot (Galudra 2003b). One workshop are not considered wealthy or of high status if they do not system still plays an important role in social status, as people neighbours to do so. In Kasepuhan, West Java, the swidden allows people to buy rice without being seen by their Lampung interacted with nearby transmigration villages, Elmhirst (1997) reported how Way Kanan villages in North consumptions, not for sale, but growing enough food often Swiddens are often used to grow rice only for local market-integrated systems tends to be gradual, adding a cash crop such as rubber or rattan to the existing system. Pure subsistence systems hardly exist anymore, as most forest dwellers and farmers have at least some economic exchange with the outside world. But the transition to fully market-integrated systems tends to be gradual, adding a cash crop such as rubber or rattan to the existing system. Swiddens are often used to grow rice only for local consumption, not for sale, but growing enough food often conveys social status beyond the direct financial benefits. Elmhirst (1997) reported how Way Kanan villages in North Lampung interacted with nearby transmigration villages, allowing people to buy rice without being seen by their neighbours to do so. In Kasepuhan, West Java, the swidden system still plays an important role in social status, as people are not considered wealthy or of high status if they do not have a swidden plot (Galudra 2003b). One workshop participant from Rimbauan Muda Indonesia, an organization of women foresters, who was also a Kasepuhan community representative, said:

Huma atau ladang mempunyai arti penting bagi masyarakat Kasepuhan. Padi ladang itu simbol kesejahteraan masyarakat, karena itu padi ladang tidak boleh diperjualbelikan. Masyarakat percaya jika melanggar aturan ini maka mereka akan terkena bencana. (Upland fields are very important for the Kasepuhan community. Upland paddy plays an important role as a symbol of wealth for the community, so selling or buying any kind of upland paddy is not allowed. People believed a calamity will befall them if they break the rule.)

In some parts of Indonesia, swidden fallow systems became enriched with fruit trees, rubber trees and rattan. The economic lifespan of rubber trees—about 30 years, but depending on the tapping regime—then determines the fallow length (Penot 2007, Cramb 1993). Farmers plant rubber soon after the first rice crop and may obtain rice yields for 2 seasons. In swidden-based rattan cultivation, farmers plant rattan seeds almost at the same time as they plant rice. While the field is used for rice cultivation, the rattan seedlings are protected. Rattan gardens established in a swidden system need little maintenance, just slashing undergrowth and killing some trees (Sasaki 2007). After rice cultivation, this area slowly reverts to secondary forest, and farmers wait for the rattan to grow. They generate cash income from the rattan during the forest fallow period (Belcher 2007).

The transition to reliance on cash as the basis of food security tends to have ups and downs. Prices for export crops may follow boom-and-bust cycles, pests and diseases may catch up with widespread cultivation of a cash crop, or the urban economy may hit a slump or suffer from a global recession. Suddenly, growing one’s own food has direct survival value, and one can be thankful for a local tradition that valued it. Interestingly, in the transition of much of the lowland forest area of Sumatra and Kalimantan to rubber-based livelihoods, the relevance of maintaining swiddens was recognized (Sulistyawati et al. 2005). In the local tradition, planting trees secures land tenure, so the common pool of land for swiddens reduced when rubber was planted and locked land up in a long production cycle. Many villages established rules that forbade planting trees on the remaining land available for swiddens to keep this communal land, or ‘sesap nenek’ (Box 10), available for local food production. Given the economics of it, only the poorer members of the community found this an interesting option, and the institution became a social safety net.

Suyanto 1999 found the individualization of the land tenure institution to be common in the area, particularly for rubber plots and bush and fallow plots. Collective ownership by the extended family evolved into individual family ownership, and the matrilineal system of inheritance to daughters evolved into the bilateral system to daughters and sons alike. However, ownership of upland paddy is the least individualized, and joint family ownership still prevails in many areas (Table 10).

gradually depletes the rhizomes’ capacity for regeneration (Purnomosidhi et al. 2005). Imperata biomass decreases drastically when relative light intensity of 20% was reached. When more than 20% of sunlight reaches the ground, Imperata still has a chance in agroforestry systems.

In practice, a combination of these techniques has to be used at the various stages of a developing agroforestry system:

1. Land preparation for food crops uses tillage, herbicides or preferably a combination.

2. At the stage when there is too much shade for profitable intercropping but too little shade to control Imperata, a combination of the pressing and selective herbicide use is effective.

3. Farmers can rely on shade-based control once canopy closure has reduced light at the ground level.

Van Noordwijk et al. (2008b) discuss how the length of the period described in 2 above depends on the growth rate and planting pattern of the trees.

5.4 The ‘fallows’ may become the primary source of cash

Pure subsistence systems hardly exist anymore, as most forest dwellers and farmers have at least some economic exchange with the outside world. But the transition to fully market-integrated systems tends to be gradual, adding a cash crop such as rubber or rattan to the existing system. Swiddens are often used to grow rice only for local consumption, not for sale, but growing enough food often conveys social status beyond the direct financial benefits. Elmhirst (1997) reported how Way Kanan villages in North Lampung interacted with nearby transmigration villages, allowing people to buy rice without being seen by their neighbours to do so. In Kasepuhan, West Java, the swidden system still plays an important role in social status, as people are not considered wealthy or of high status if they do not have a swidden plot (Galudra 2003b). One workshop participant from Rimbauan Muda Indonesia, an organization of women foresters, who was also a Kasepuhan community representative, said:

Huma atau ladang mempunyai arti penting bagi masyarakat Kasepuhan. Padi ladang itu simbol kesejahteraan masyarakat, karena itu padi ladang tidak boleh diperjualbelikan. Masyarakat percaya jika melanggar aturan ini maka mereka akan terkena bencana. (Upland fields are very important for the Kasepuhan community. Upland paddy plays an important role as a symbol of wealth for the community, so selling or buying any kind of upland paddy is not allowed. People believed a calamity will befall them if they break the rule.)

In some parts of Indonesia, swidden fallow systems became enriched with fruit trees, rubber trees and rattan. The economic lifespan of rubber trees—about 30 years, but depending on the tapping regime—then determines the fallow length (Penot 2007, Cramb 1993). Farmers plant rubber soon after the first rice crop and may obtain rice yields for 2 seasons. In swidden-based rattan cultivation, farmers plant rattan seeds almost at the same time as they plant rice. While the field is used for rice cultivation, the rattan seedlings are protected. Rattan gardens established in a swidden system need little maintenance, just slashing undergrowth and killing some trees (Sasaki 2007). After rice cultivation, this area slowly reverts to secondary forest, and farmers wait for the rattan to grow. They generate cash income from the rattan during the forest fallow period (Belcher 2007).

The transition to reliance on cash as the basis of food security tends to have ups and downs. Prices for export crops may follow boom-and-bust cycles, pests and diseases may catch up with widespread cultivation of a cash crop, or the urban economy may hit a slump or suffer from a global recession. Suddenly, growing one’s own food has direct survival value, and one can be thankful for a local tradition that valued it. Interestingly, in the transition of much of the lowland forest area of Sumatra and Kalimantan to rubber-based livelihoods, the relevance of maintaining swiddens was recognized (Sulistyawati et al. 2005). In the local tradition, planting trees secures land tenure, so the common pool of land for swiddens reduced when rubber was planted and locked land up in a long production cycle. Many villages established rules that forbade planting trees on the remaining land available for swiddens to keep this communal land, or ‘sesap nenek’ (Box 10), available for local food production. Given the economics of it, only the poorer members of the community found this an interesting option, and the institution became a social safety net.

Suyanto 1999 found the individualization of the land tenure institution to be common in the area, particularly for rubber plots and bush and fallow plots. Collective ownership by the extended family evolved into individual family ownership, and the matrilineal system of inheritance to daughters evolved into the bilateral system to daughters and sons alike. However, ownership of upland paddy is the least individualized, and joint family ownership still prevails in many areas (Table 10).
Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia

Box 10: Evolution of swiddens and jungle rubber systems in Jambi

Several phases can be recognized in the transformation process of shifting cultivation in Jambi. Shortly after Jambi province was brought under Dutch colonial control in the early 20th century, the first para rubber (*Hevea brasiliensis*, derived from Para state in the Amazon) was planted close to Muara Bungo. The rapid growth in global demand for rubber during and after World War I (1914-1918) brought a rapid expansion of rubber to virtually all farms along the Batang Hari river. The area could afford to import rice, as the rubber price was high. Chinese entrepreneurs who controlled the processing plants provided free seed to increase rubber production. According to some accounts, rubber seeds were catapulted into secondary forests, bypassing the rice swidden stage. A situation was rapidly reached in which there were more trees than could be tapped, and the area attracted labour from the highlands, where coffee production was less interesting at that time, and from Java, including contract labour migrants returning from North Sumatra who decided to stay in Jambi on their way through. With various ups and downs in price, rubber remained the mainstay of the rural and urban economy in Jambi. The construction of the Trans-Sumatra Highway, logging concessions and transmigration programs brought more people into the area and provided opportunities for expanding rubber. Planting rubber trees was sufficient to claim land in the local tradition, even if few trees survived, and local claims on land carved up the area. Many newcomers, without a local right to swidden systems, were employed as share-tappers of jungle rubber. During the 1990s the rubber price fell, and upland rice production regained importance, but only few people planted upland rice without rubber (Penot 2007).

Previous surveys found that jungle rubber trees stayed in production for a mean of 27.9 (± 3.9) years, of which only 14.8 years yielded stable production. The initial 2.7 years of the ‘learning stage’ and the remaining 10.4 years of post-stable production yielded less latex. The average age of rubber agroforest plots when they stopped being tapped was 39.8 (± 3.8) years, and they were left untapped for 3.9 years. However, 48% of plots were still under production. The average period of abandonment for actually abandoned plots was 9.0 (± 1.9) years, with a maximum of 19 years. It was interesting to note that all plots over 60 years old were still under production at the time of clearing, but that plots much younger but still in production were also cleared (Joshi pers. comm.).

The existence of communal land management, whereby households are given access to land where they can return to paddy cultivation but still produce some of their food and medicine from fallow products, is probably the most important part of the social safety net in Muara Bungo. In the foothills of the Kerinci Seblat National Park in the Rantau Pandan valley, as well as in the lowland peneplain, villages developed regulations that reserved some land, locally known as ‘sesap nenek’, for swiddening; without the right to plant trees the fallow land returned to the communal pool of land and became a safety net for the poorer households.

Rantau Pandan village, for example, has 800 ha reserved as sesap nenek on land that is relatively fertile but a 1-2 hour walk from the village centre. The village leader decides on requests from the local community to open plots. No tree crops are allowed on the communal lands, and land cannot be sold, pawned or inherited. Generally, one household is able to cultivate about 1-2 hectares of upland rice per year on this land with shifting cultivation.

Table 10: Tenurial system on Muara Bungo, Jambi

<table>
<thead>
<tr>
<th>Land tenure</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communal or sesap nenek</td>
<td>Bush fallow, used only for rice cultivation</td>
</tr>
<tr>
<td>Joint family</td>
<td>Usually upland area used for rubber</td>
</tr>
<tr>
<td>Single family</td>
<td>Wet paddy (inherited along the female line), rubber, oil palm, bush fallow</td>
</tr>
</tbody>
</table>
5.5 Fallow management network experience

When the swidden system transforms into a more intensive one, negative nutrient balances in the soil tend to increase (Juo and Manu 1996) because of burning, harvesting, leaching and erosion. New fallow systems are therefore needed, often involving more careful management of the fallow phase. The range of managed fallow options, described in Cairns (2007) and elsewhere, include using Chromolaena odorata (Roder et al. 2007), Piper aduncum (Hartemink 2007), Leucaena leucocephala (Agus 2007, Piggin 2007, MacDicken 2007). The more complex systems are discussed by Lawrence et al. (2007) and Wadley (2007).

In the case of leucaena fallow in South Sulawesi, Agus (2007) suggests planting leucaena in contour hedgerows to control erosion more effectively under the more intensified system.

Box 11: Emergence of sisipan and slash-and-mulch regeneration of rubber agroforests without upland rice

At the start of rubber expansion in Sumatra around 1920, rubber came in as an enriched fallow tree in systems driven by upland rice production (see Box 10). But the economic results of the emerging rubber agroforests made the tree phase of the system more important than the crop phase.

With the 1990s ban on the use of fire for slash-and-burn clearing, farmers in Rantaupandan, Jambi, now rely on a slash-and-mulch system to clear land, letting the trees decompose where they fall and planting large rubber saplings among them (Figure 18). The benefits are young rubber’s decreased exposure to pigs, which are the main pest, and avoiding the problems of smoke and haze. A drawback is this disappearance of upland rice from the rejuvenation stage, leaving people fully reliant on the market or on paddies operated by women on land with use rights inherited by either a matrilineal or mixed system.

Figure 18: In the late 1990s, rubber farmers in Bungo, Jambi, started to use large rubber planting material for slash-and-mulch and patch-level (‘sisipan’) type rejuvenation of their rubber agroforests. A market developed rapidly for seedlings collected as wildlings in grafted clonal rubber plantations at some 50 km from the site. These bare-rooted and leafless saplings, 24 cm in diameter and 23 m tall, are rehydrated in streams and planted after buds are seen to swell.
6.1 Fire and smoke issues

Historical records show that episodes with thick smoke blanketing areas of Indonesia occurred hundreds of years ago, but the forest and peat land fires of 1986 and 1997/1998 became notorious for the smoke and haze they produced. In the political climate of 1986, all the blame was put on the ‘slash-and-burn farmers’. In 1997/1998, the role of plantation companies was openly discussed, and there was some recognition that fire was used as a weapon in conflicts over land (Tomich et al. 1998). With better remote sensing and the availability of ‘hot spot’ data that can view fire locations at night, the blame game has changed considerably. The locations of fire become known, and concession holders are held responsible for the area they supposedly manage. Well-managed swidden fires that are extinguished before nightfall can still escape notice.

The response to the issue of smoke and haze can be differentiated by type of concern. The direct health impacts of the haze, and low visibility and interrupted air traffic, are mostly caused by peat land fires that do not get very hot but smoulder for a long time. Concerns over greenhouse gas emissions depend on the temperature of the fire, with cooler, wetter fires producing methane, which has a much greater greenhouse gas effect than CO₂. Where the concern is loss of biodiversity and terrestrial carbon stocks, the nature of the fire does not really matter. For some environmentally concerned stakeholders, efforts to obtain more controlled burning tackle only the symptoms and not the cause of the problem, but others consider it a real solution.

6.2 Hydrology

At the landscape scale, the swidden system maintains a portion of land well covered by vegetation. This helps to reduce surface runoff and thus regulates stream flow. In a study in Southeast Asia, Bruijnzeel (2004) demonstrated that the threshold for a significant increase in stream flow is when more than 30% of forest vegetation is removed from the landscape. The wet season peak flow increases dramatically with the decrease in land cover. The dry season base flow also increases, though at a lower rate than the peak flow (Figure 19). However, Ziegler et al. (2007) demonstrated that, as the proportion of quick flow increases as a result of vegetation removal, the proportion of deep percolation and thus base flow decreases (Figure 19). This causes more severe droughts downstream.

This finding in relatively small catchments was not reflected in large river basins. Wilk and Anderson (2001), studying the 12 100 km² Nam Pong catchment in northeast Thailand, did not detect changes in water flow despite the reduction in forest cover from 80% in 1957 to 27% in 1995.

6.3 Erosion and sedimentation

A study of steep uplands in Vietnam revealed that under the continuous cultivation of upland rice or cassava, the amount of soil lost was consistently high at more than 30 mg per ha per year. However, under swidden farming, high soil loss was observed in the first year (cultivation) and the second year (first year of fallow). In the following fallow years, soil loss was essentially zero (Table 11).

A long-term analysis of soil surface subsidence (Figure 21) in Vietnam was consistent with Table 11. Before collectivization, when the fallow was a relatively long 15 years and rice cultivation was a short 2 years, the rate of soil loss was relatively low. In the postcollective period, starting in the late 1980s, soil loss accelerated.
Table 11: Soil loss under upland rice, cassava and swidden on 0.81.2 m m-1 in Da Bac Tay, Vietnam

<table>
<thead>
<tr>
<th>Land use</th>
<th>Year</th>
<th>Water erosion (mg ha⁻¹)</th>
<th>Tillage erosion (mg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland rice</td>
<td>1st</td>
<td>69</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>Cassava</td>
<td>1st</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>Fallow</td>
<td>1st</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Ziegler 2007

Figure 21: Change in soil surface as affected by erosion under long fallow (black line) and short fallow (red line). At left, notice the slow reduction in soil surface prior to 1960, when the fallow was long, and more rapid change afterwards, which coincides with fallow shortening. The figure on the right shows rapid soil subsidence in the first 4 years after cultivation but almost no change during the long fallow. Under short fallow, however, erosion became negligible, as indicated by the flat line, after more than 5 years of fallow.
Figure 22: Quantifying erosion and the movement of surface material on a steep slope cleared by slash and burn for planting rice + rubber in Rantau Pandan, Jambi (A); C and D show the orientation of felled logs and major charcoal patches relative to the main direction of overland flow on a steep hill cleared for planting rice + rubber in Rantau Pandan. Using a simple system of collecting sediment from the overland flow, researchers were able to map the local sediment flows and areas of deposition (B). Source: Rodenburg et al. 2003 and unpublished field maps.

Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia
Box 12: Process of soil movement on slash and burn

Jonne Rodenburg and Cahyo Priyono quantified the process of soil movement following land clearing for new rubber + rice planting in Rantau Pandan, Jambi, Sumatra (Figure 22). Slash-and-burn land clearing on sloping land may cause increased soil runoff following the disappearance of protective vegetation. Soil runoff and deposition affects soil fertility and spatial patterns of fertility parameters in a field. This study seeks to clarify the role of spatial patterns of postburn dead biomass (necromass) in soil runoff and deposition and their combined effect on spatial patterns in soil pH and resin-extractable P. The study is carried out on a postproductive rubber (*Hevea brasiliensis*) agroforest. Soils are classified as Dystric Fluvisols. After slash and burn, the field was planted with rubber seedlings and rice. For comparison, the adjacent rubber agroforest site was sampled. Soil runoff is expressed here as the quantity of downward-moving soil that passed the specific location of a flow trap. Existing physical soil runoff barriers and crop performance were scored. Despite serious soil runoff from the steeper upper slopes, little soil was actually lost because of the sloping form of the field, presence of natural soil runoff barriers, and planted crop. The spatial variability of soil pH decreased at the expense of small-scale, within-strata variability mainly because of the patchy distribution of soil runoff barriers. Soil runoff, aggravated by slash and burn, did not develop a clear soil-fertility gradient down the slope. In areas of high soil runoff potential, clear burns should be avoided because soil runoff barriers like remnants of slash and burn and surface litter maintain the soil and its fertility. Source: Rodenburg et al. 2003

6.4 Biodiversity and carbon stocks

6.4.1 Carbon stocks

Carbon content in the soil is an indicator of soil fertility. Sequestration of atmospheric carbon dioxide in plant tissues and soil organic matter is an important factor affecting greenhouse gas concentration in the atmosphere. High carbon stock in the soil and plant biomass is an indicator of effective sequestration.

The transition from forest to swidden and to continuous cropping has the tendency to lower the organic matter content of the soil. Bruun et al. (2006) found in Sarawak, Malaysia, a slight decrease in soil carbon as forest is converted to swidden. However, further transition of swidden into permanent agriculture depleted soil carbon by nearly 30 mg C ha⁻¹, from 56 to 29 mg ha⁻¹ (Figure 23).

The trend in the stock of C above ground is similar to that below ground, except that the magnitude of the decrease is much higher as forest is converted to swidden and swidden converted to permanent cropping (Table 12). Fallow length determines the stock of carbon in the system (Table 13).

![Figure 23: Soil carbon in the layer from the surface to 20 cm down under different land uses (Bruun et al. 2006).](image)

Table 12: Above-ground carbon stock and number of plant species under different land-use systems

<table>
<thead>
<tr>
<th>Land use</th>
<th>Carbon (Mg ha⁻¹)</th>
<th>Plant species per plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary forest</td>
<td>254</td>
<td>120</td>
</tr>
<tr>
<td>Rubber forest</td>
<td>116</td>
<td>90</td>
</tr>
<tr>
<td>Monoculture oil palm</td>
<td>91</td>
<td>25</td>
</tr>
<tr>
<td>Shrub (about 8-year fallow)</td>
<td>74</td>
<td>45</td>
</tr>
<tr>
<td>Vegetables</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Cassava</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Imperata</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 13: Fallow age in relation to carbon stock in Sarawak, Malaysia, and South America

<table>
<thead>
<tr>
<th>Site</th>
<th>Fallow age (years)</th>
<th>C stock (Mg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarawak, Malaysia</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>28.6</td>
</tr>
<tr>
<td>Brazil</td>
<td>12</td>
<td>54.0</td>
</tr>
<tr>
<td>Bolivia</td>
<td>25</td>
<td>67.5</td>
</tr>
<tr>
<td>Brazil</td>
<td>59</td>
<td>90.0</td>
</tr>
</tbody>
</table>
6.4.2 Biodiversity

Biodiversity is an important natural resource for economic development, technological advancement and human life. In a swidden system, longer fallow periods tend to have higher biodiversity. Furthermore, as the swiddens transform into permanent systems, there is a significant loss in biodiversity (Table 12, Figure 25).

Swidden transitions in Indonesia may have been triggered primarily by increased market integration for native non-timber forest products and the introduced tree crops rubber and coffee, which were initially compatible with the woody fallow vegetation. Market integration starts when market sources of income complement local food production, and attractive prices can lead to reliance on the market for staple food. As many forest and agroforest products have relatively high value per unit of weight, they provide options for fairly remote communities. Market integration through the intensification of food crops may be a challenge unless roads are good. The agroforestry solution, which combines high landscape-level biodiversity with medium market integration, is not an end point of evolution, however, and may transform into more intensive tree crop monocultures, as is the current trend for rubber agroforests.

![Figure 24: Predicted decline, using the FALLOW model, of soil organic matter content in a swidden landscape, with individual plots showing asymmetric saw-tooth patterns of slow recovery and rapid decline (van Noordwijk 2002).]

![Figure 25: Schematic relationship between degree of market integration and landscape-scale biodiversity of swiddens and its derivative land-use systems.]

Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia
The 120 million ha of Indonesia’s permanent forest estate were supposed to provide the country and its people with a prosperous life. But the reality is different. These forests are degrading and losing their natural forest cover at an alarming rate that has reached over 1 million ha per year. This leaves local communities living in and around the forest in a difficult position. Large-scale logging started in the late 1960s, operated by timber concessions with foreign investment and good political connections. Since then, billions of cubic meters have been cut. The highest-quality wood is used as timber, the next category down for plywood, and the remainder for pulp and paper. The concept of selective logging and natural regeneration has been virtually abandoned for an approach based on monoculture fastwood plantations.

To improve livelihoods in degraded forest areas, the government has initiated various development programs. Two programs will be discussed here: (1) permanent food-crop agriculture in the forest village development program and (2) oil palm plantations.

7.1 Permanent food-crop agriculture

While high-quality agricultural land continues to be converted for urban and industrial development, and agriculture on existing irrigated and rainfed fields is challenged by climate change, the government of Indonesia sees extending the area used for permanent agriculture as part of the response to avert a national food crisis and to contain rising food prices. The government has recently declared that a further 15 million ha of land in the permanent forest estate should be reallocated for permanent food-crop agriculture. Details are still under discussion.

Permanent food-crop agriculture has been the government’s choice to increase rice production, not leaving to farmers or local communities the choice of intensification pathways based on tree crops. In 1991, the Department of Forestry initiated the Village Forest Development Program as a way to offset the negative effects of logging and improve livelihoods in forest communities living in and near concessions. Many timber concessions chose to support demo plots, where a few selected farmers received help in building irrigation infrastructure, as well as agricultural tools and inputs. It was expected that other villagers would see the success of demo plots, copy the technology and stop practicing shifting cultivation.

The case study in Tanjung Paku shows that the development program involves drastic technological and cultural changes. With rapid changes in policies and market prices for inputs and the timeframe of a logging concession that moves on once the attractive timber has been harvested, the changes may not be sustainable (Box 13).

7.2 Oil palm plantations

Following the success of oil palm plantations in Malaysia since the 1960s, with the introduction of high-yielding, low-stature palms, Indonesia is now becoming the country with the largest oil palm area. In addition to expansion by national and private companies, investors and technical know-how from Malaysia have come to Indonesia, with Sumatra as the core area and Kalimantan as the secondary area of expansion (Figure 26).

In 1968 the area with productive palm was only 0.12 million ha. By 1978 it had reached 0.25 million ha, in 1994 1.8 million ha and in 2006 6.2 million ha. With growing world demand for vegetable oils, options for use as biofuel and rising prices for crude palm oil, further increases are planned (Anonymous 2008). The oil palm plantation area is projected to reach 8 million ha by 2010 and as much as 9 million ha by 2025 (Direktorat Jenderal Perkebunan 2007).

Oil palm expansion is taking place mainly in areas where it replaces food-crop shifting cultivation and smallholder rubber production, but the pattern is different between Sumatra and Kalimantan. In Sumatra, oil palm is rapidly becoming a smallholder crop, but in Kalimantan expansion still depends on private companies with local monopolies on processing facilities and strong support from local government for land acquisition, often causing conflicts (Colchester et al. 2006).

National statistics on oil palm in Indonesia recognize three strata: smallholders, private companies and state companies. Out of a total planted area of 6.2 million ha in 2006, smallholders controlled 41% of the area and produced 34% of the crop, private companies 48% of the area and 52% of the crop, and state companies 11% of the area and 14% of the crop (IPOC 2006). The government plantations have 1 ha of immature plantation per 20 ha of mature gardens, which is below the replacement level of 1:10 if we assume 3 years of immature garden and 30 years of production. Smallholders have 1 ha of immature garden per 4 ha of productive garden, and private plantations 1 ha for 3 ha, indicating rapid expansion. The postproductive category is 1 ha per 65 ha of mature area for smallholders, per 95 ha for private companies and per 83 ha for state companies. This suggests that there is little scope for more active replanting within the existing oil palm area.

The relative share of smallholders in the immature, newly planted area in 2006 was 51% in Sumatra, which as an island represents 76% of oil palm area in Indonesia. The share was 44% in Papua and only 15-20% in Kalimantan and Sulawesi, indicating a substantial difference in pattern. Kalimantan and Papua are the areas with the highest relative growth rates, with 1 ha of immature plantations per 3.5 ha of mature plantations in Kalimantan and per 1.9 ha in Papua, compared with per 4.1 ha in Sumatra, per 8.4 ha in Sulawesi and per 4.0 for Indonesia as a whole. The production data for
Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia

Box 13: Tanjung Paku: return to shifting cultivation?

A case study conducted by Nugraha (2005) of Tanjung Paku village in Central Kalimantan, at the border with West Kalimantan, provides an example of the ups and downs of efforts to introduce permanent rice-based agriculture to Dayak communities. The area of Tanjung Paku was classified as limited production forest, as it is between Bukit Baka National Park and Bukit Raya National Park. The village had a population of 198 (33 households, with 6 people per household) in 1984, increasing to 384 (76 households with 5 each) in 1994 and 403 (95 households with 4.2 each) in 2004. Population growth has been mostly natural, rather than by migration.

Before a timber concession obtained logging rights from the central government, the villagers depended on shifting cultivation, using traditional knowledge to maintain environmental sustainability. Each family managed 2-3 ha of agricultural land (the ‘ladang’), which produced on average 5.4 tons of rice per year per family. They also collected non-timber forest products like rattan. In 1990 the timber concession came in and introduced chainsaws, generators and television, followed by satellite dishes and video compact discs. Houses had electricity, and at night communities would gather together to watch television in a village hall (‘balai desa’). The concession offered jobs such as chainsaw operator, day labourer, concession employer, night guard and teacher. Most of the villagers had at least part-time off-farm employment, and 45 villagers worked for the timber concession. They also obtained livestock. In response to the 1991 government policy establishing the Village Forestry Development Program, the timber concession introduced irrigated rice fields, tree crop plantations (rubber and Shorea sp.), fish ponds and vegetable gardens. The irrigated rice area increased from a demo plot of 0.18 ha in 1991 to 6.7 ha in 1994, involving 35 households, and 8.3 ha in 1997. They planted rice twice a year, yielding about 7.2 t ha⁻¹ per year. This yield compensated for a 25% reduction in ladang area. The development program was considered successful in creating jobs and increasing villagers’ income. The villagers were able to meet their rising economic needs. The concession also subsidized for households such basics as salt and sugar. In return, these people had to help to create a safe working environment for the concession. The area opened each year for new ladangs decreased from 1.65 ha per year per household in the 1980s to 0.65 ha per year per household in 2004. However, because the number of households had almost trebled, a larger total area was farmed.

Unfortunately, the success of the irrigated rice did not last long. The forest concession policy to reduce farm subsidies to discourage dependency did not work as expected, while rising fertilizer prices made the high-input mode of production less attractive. Local institutions for managing irrigation had not developed, and the transfer of technology to villagers had been incomplete. Farmers started to abandon the irrigated rice fields. By 2005 two-thirds of the households relied again on shifting cultivation in secondary forests for their rice.

Figure 26: Oil palm distribution in Indonesia in 2006, covering 1015% of the area in Riau, North Sumatra and Jambi; 510% of the area in Bangka, South Sumatra, Bengkulu and West Sumatra; 15% of the area in Banten, Lampung, Aceh, Kalimantan and West Sulawesi; and <1 % of the area in the rest of Indonesia (IPOC 2006).
smallholders are approximately proportional to smallholders’ share of the productive area (which may indicate the way the statistics were a derived and estimated rather than reality on the ground). Smallholder statistics are considered less reliable than those for private plantations.

The interest of local governments in promoting oil palm plantation as a development strategy is significant in most of Kalimantan. Kutai Regency, East Kalimantan, currently has 180,000 ha of oil palm plantation but plans to reach 350,000 ha in 2010 and 500,000 ha between 2015-2020 (Hartiningsih et al. 2008). The government plans to develop in Kalimantan a contiguous oil palm area of 1.8 million ha, the biggest in the world (Arif 2008b). To fill the need for labour in the plantation area, the government initiated a transmigration program to bring in people from outside. With this pattern of expansion, oil palm is not attractive as an alternative to shifting cultivation of food crops. The way land is acquired, operating in the grey zone of forest lands claimed by the state but not legally gazetted as such, the net effects on the welfare of local communities can be negative. Local people perceive an increase in flood frequency triggered by relatively small rainfalls. Oil palm development in West Kalimantan is reported in Box 14 as a case study based on reports by Colchester et al. (2006), Potter (2008), and a personal interview with Budi, a World Agroforestry staffer in West Kalimantan.

As current prices are high, many growers have become happier with the arrangements, but disappointment emerged when a company takeover led to the doubling of the debt calculated for planting palms. Some farmers attempt to create a mixed cultivation system and retain elements of swidden, but this may be more for symbolic and social needs than economic ones.

7.3 Government officers’ understanding of shifting cultivation

Government officers from Dinas Kehutanan and Perkebunan-Bungo Regencies in Jambi province, Dinas Kehutanan and Perkebunan-Malinau Regencies in East Kalimantan province, Bappeda in Papua province and Bappeda in West Aceh define shifting cultivation as having the following characteristics:

1. shifting from one place to another and therefore not permanent;
2. involving burning for land preparation to ease planting and, it is believed, to raise and neutralize the pH;
3. reliance on fallow periods to restore soil fertility; and
4. focusing more on subsistence farming for local consumption and preferring annual crops over perennials.

Considering this definition of shifting cultivation, there is a little confusion among government officers on the currently evolving practice of the farming system and whether it can still be considered shifting cultivation. In Aceh, local communities cut the forest to plant ‘nilam’, a mint from which the perfume oil patchouli is distilled. They prepare the land with burning, leave it fallow and open other forest area when nilam production decreases, and the cycle continues. This nilam farming is similar to shifting cultivation, but the crop is not for food and this is not subsistence farming but, rather, growing a commercial species for cash income.

Shifting agriculture is practiced by both poor and rich, and practitioners do not consider village, Regency or provincial boundaries when they farm. This has a consequence when the government of a certain Regency plans to reallocate the land for development. Government officers from one Regency sometimes face communities living in other Regencies because the land in question traditionally belongs to them. In this farming system, the shifting cultivators consider adat law above administrative boundaries set by the government.

This farming system takes place in both forested and unforested lands. In Aceh, shifting cultivation takes place in a mountainous area that is environmentally fragile. In Papua and Malinau, where the population is sparse, shifting cultivation is considered a sustainable system. Local government officers agree that its sustainability or unsustainability depends on where it is practiced, whether on sloping or relatively flat land, or in a sparsely or densely populated area.

<table>
<thead>
<tr>
<th></th>
<th>Smallholders as percentage of total</th>
<th>% of Indonesian total area</th>
<th>Immature area</th>
<th>Mature, productive area</th>
<th>Damaged, post-productive, area</th>
<th>Total area</th>
<th>Total yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumatra</td>
<td></td>
<td>76.4</td>
<td>51.1</td>
<td>42.3</td>
<td>47.2</td>
<td>43.9</td>
<td>43.2</td>
</tr>
<tr>
<td>Java+Bali</td>
<td></td>
<td>0.4</td>
<td>0.0</td>
<td>29.1</td>
<td>62.9</td>
<td>24.7</td>
<td>27.2</td>
</tr>
<tr>
<td>Kalimantan</td>
<td></td>
<td>20.2</td>
<td>19.5</td>
<td>37.3</td>
<td>72.3</td>
<td>31.3</td>
<td>33.8</td>
</tr>
<tr>
<td>Sulawesi</td>
<td></td>
<td>2.1</td>
<td>14.5</td>
<td>23.1</td>
<td>0.0</td>
<td>21.7</td>
<td>22.3</td>
</tr>
<tr>
<td>Nusa Tenggara+Maluku</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Papua</td>
<td></td>
<td>1.0</td>
<td>43.5</td>
<td>43.1</td>
<td>0.0</td>
<td>42.9</td>
<td>42.7</td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
<td>100</td>
<td>39.3</td>
<td>41.0</td>
<td>49.6</td>
<td>40.8</td>
<td>34.0</td>
</tr>
</tbody>
</table>

Source: IPOC 2006
Box 14: Oil palm in West Kalimantan

The first oil palm in Kalimantan was planted in Sanggau, West Kalimantan province, in the late 1970s. The crop was introduced to restore ‘critical lands’ or ‘sleeping lands’, that is, the fallow land of swidden cultivation covered with Imperata grass. The maps show government land use policy in favour of oil palm and the excessive growing of oil palm in West Kalimantan and Sanggau.

Oil palm plantations tend to occupy more accessible areas, as roads are essential to transport the crude palm oil to the factory within 24 hours of the harvest. Swidden lands tend to occupy less populated hilly lands far from the main roads. The plantations are different in many ways from the ones of local Dayak communities. Dayaks practice dry and wet shifting cultivation, tapping jungle rubber and harvesting fruits and nuts from communal fruit groves locally called ‘tembawang’. These tembawangs are rich in biodiversity. Some of the Dayaks have adat forests, from which rattan and timber can be extracted for own use. Strict sanctions are applied on the unauthorized felling of certain trees such as the honey tree (Koompassia excelsa). In the minds of local people, the land in West Kalimantan belongs mostly to the adat community. One type of adat land can be distributed to or owned by individual people. Other kinds of adat land, such as tembawangs, cannot, as they belong to the adat community jointly. Tembawangs can have an area of hundreds of hectares, and the production from tembawangs is for everyone, with some arrangements for its distribution.
Box 14 (continued): Oil palm in West Kalimantan

Oil palm plantations need large areas. The plantation companies target adat lands that have been distributed to individual households. In the beginning, it was not easy to convince the local communities to plant their lands with oil palm trees because they did not know the benefits of them. But, since 2000, community interest in planting trees has increased because (1) there is regular income from their palm plantation and/or from working as a day labour in the nucleus palm plantation and (2) managing the palm plantation is easy.

Various arrangements exist between oil palm companies and adat people interested in planting oil palm. In Sanggau, the oil palm company set a condition that families who want to get involved in the plantation must have 7 ha of land and be willing to give 5 ha to the company for free, to be managed by the company. In Sintang, the palm company bought community land for 500 rupiah per m², is managing the land for 30 years, and is scheduled to return it to the local government thereafter. Local people can work in the nucleus palm plantation for 15,000-20,000 rupiah per day. The 2 ha of remaining land still belong to the community members to manage as so-called plasma palm plantation. The company provides credit to them for seedlings, fertilizer and insecticide, etc., until the trees can be harvested for the first time, after about 4 years. These people also get a land certificate after they pay off their debts to the company. From year 5 to 20, each family can earn around 1.5 million rupiah net per month from their labour and previous investment. The ones who are not able to manage the money earned from palm production are disappointed. They not only lose their land but also have to buy vegetables, fruits and rice, and they cannot get their land certificate if they still owe the company. But some villagers are able to retain areas of swidden rice, tembawang and rubber, mixed with oil palm, while giving up some land to the estate, but not as much as demanded.

Figure 28: The trend of oil palm plantations in Sanggau Regency, West Kalimantan (Potter 2008).
7.4 Shifting cultivation, the current condition

Government representatives do not know the number of shifting cultivators in their Regency, or the area being used for this farming practice. They do not have the budget or human resources to find out.

Shifting cultivation, as defined above, is still practised in Malinau and Papua. Local governments in these places consider this farming system not to be an environmental threat. People in Malinau practise it in the Area Penggunaan Lain. In Papua, shifting cultivators also work on plantations or in timber concessions to earn cash income.

In Aceh, shifting cultivation is considered a potential threat to the surrounding environment, particularly when done on slopes. Shifting cultivation in Aceh is predicted to increase as the price of nilam rises and because of the belief that nilam grow best in newly opened forest. This belief drives people to cut down forests to farm nilam, moving on to other forests when nilam production starts to fall.

In Aceh, the practice of shifting cultivation is used by some people as a means of occupying and owning land under the government restoration program following the December 2004 tsunami. The price of land is increasing, and people compete to occupy land to sell in the government restoration program.

The government officer of Bungo Regency indicates that there is no shifting cultivation, as defined above, practised in his area. Farmers in the area plant rubber trees and do not shift from one place to another. The ones farming in the forest area and on state land, he says, are encroachers.
After discussing the trends in the way swidden systems have evolved throughout Indonesia, we now come to the main questions in the policy debate: Is there a problem? If so, what is the nature of it? What are the consequences of not dealing with it? What are the options to mitigate the problem or deal with it? Different stakeholders have a very different perception of what the problem is, describing it variously as

1. environmental destruction and loss of natural forest,
2. persistent rural poverty and backwardness for lack of economic growth, or
3. interference in local affairs and disrespect for local culture.

We may distinguish situations in which swidden systems are still appropriate and seen as the best form of locally adapted land use (situation C in Figure 30) from situations in which swiddens are evolving into other land uses spontaneously (as in situation A) or by force (situation B). In various phases of their political history, governments throughout Asia have attempted the approach described in B by combining forest protection with the backwardness argument, which has met with considerable resentment. Yet, with time, more voluntary change would often have emerged if the alternatives had become or been made sufficiently attractive. Roshetko et al. (2008) and van Noordwijk et al. (2008c) discussed barriers to farmer tree planting in the context of sustainable forest management and the need for a paradigm shift in the approach to forestry.

8.1 An example of spontaneous transformation, followed by forest destruction

An example of situation A is the historical emergence 100 years ago of rubber agroforestry in relatively remote parts of Sumatra and Kalimantan, which did not require any formal research, extension or policies. It was driven by booming prices and active marketing agents who provided rubber seed free as investments for their rubber-processing plants. This change allowed economic welfare to improve, while local systems adapted to keep swiddens in ‘sesap neneks’ in the local portfolio of options. The main government intervention was a largely unsuccessful attempt to protect the large plantations from competition from more efficient smallholder producers. The effect of the transformation on forest resources was mixed: the rubber agroforests allowed for sustainable livelihoods on 35 ha per household, the area that can be tapped with household labour, and natural forests remained part of the landscape while population density grew to some 50 people per km² by both attracting migrants and contenting local youths to stay in the area. All accessible parts of the landscape, however, were transformed into rubber agroforest, and the portion of the local flora and fauna that could survive in this habitat was the only portion that survived. Natural forests beyond community-controlled rubber agroforests were logged with a supposedly sustainable selective logging system sanctioned by the state. In fact, they were logged beyond recovery and then replaced by fastwood monoculture plantations, again sanctioned by the state. The voluntary transformation of swiddens did not in the end protect forest resources, but it allowed for the survival of part of the local flora and fauna, while the agencies that were supposed to actively protect the natural forest failed to do so.

In response to land degradation and to cope with weather, farmers in West Timor have improved their practices in fallow management through the use of Sesbania grandiflora and Leucaena leucocephala in the so-called Amarasi system. Amarasi adds soil fertility and provides high-quality fodder for cattle. Since the psyllid outbreak in the 1980s destroyed Leueana, alternative legumes were planted, such as Calliandra, Gliricidia and psyllid-tolerant Leuceana. The dynamics of farmer tree planting are still not fully appreciated (Kieft pers. comm.).

8.2 An example of forced transformation: Aceh during and after the conflict

Relative to other provinces of Sumatra, Aceh has maintained its forests well. Forest protection, however, was not so much a deliberate choice as a consequence of internal security problems that restricted villagers to the immediate surroundings of the village and slowed external resource extraction. After the peace agreement, the rate of forest clearing increased to open up fields for agriculture.

The tsunami that hit the coastal zone of Aceh on 26 December 2004 brought a dramatic shift in social, economic and political conditions across the province. Demand for wood for house construction in the rehabilitation process skyrocketed. However, the political debate about the sustainability and legality of wood sources provided a counterbalance. The attraction of clearing land at least partly to sell the wood increased. Time series data on land cover in

![Figure 30: Three policy domains with regard to swidden systems and their transformations.](image-url)
West Aceh show that deforestation increased after the tsunami and peace agreement to over 4,400 ha per year. Two thirds of the deforestation took place in the conserved forest zone, most of which is located further inland (Budidarsono et al. 2007).

Paddy cultivation also increased after the tsunami and peace agreement in response to a near-doubling of the rice price from 4,500 rupiah per kg in late 2004 to 8,000 rupiah per kg in early 2007. The peace agreement calmed farmers’ earlier fears about going into forests to clear them and cultivate annual crops.

A financial profitability calculation for upland rice production in Aceh Barat did not show a major difference in the bottom line between 2004 and 2007, as the opportunity cost of labour increased with new reconstruction jobs in the coastal zone providing wages substantially above the going rate across the province. With the efforts of external supporters of house building to avoid using wood from illegal sources, demand for bricks increased, and many sites in the foothills started to respond to that demand, increasing the opportunity costs of labour further inland.

The governor of Aceh declared a logging ban and stopped all logging and land clearing with fire. The impacts on local livelihoods are not yet clear but likely will become clearer as subsidized reconstruction in the coastal zone comes to an end. There has been little investment in making tree crops or agroforest management more attractive for the inland areas, so the forced ending of anything that looks like swiddens or shifting cultivation may put Aceh in situation B of Figure 30.

8.4 Criteria for situation C

Criteria for the sustainability and appropriateness of swiddens (situation C) are incomplete. As a simple guideline, a population density of 10 people per km² in the humid tropics may be a threshold. The dynamic landscape model Forest, Agroforest, Low-value Landscape or Wasteland? (FALLOW) suggests with its default parameters that, at more than 15 people per km², recovery during the fallow phase becomes deficient and changes are needed to avoid collapse. Rubber agroforests can provide for about 50 people per km², according to current productivity data. To support more people in a rural area, labour intensive but productive paddy rice systems may be the only option.

In reality, however, efforts to attract people to permanent residences with access to schools, health services and clean...
water have intensified pressure on local resources, even in landscapes where sufficient space is available overall. Local degradation can be accompanied by forest preservation in more remote parts of the landscape.

8.5 REDD and swiddening

Since the global community realized that it cannot ignore that the 20% of global greenhouse gas emissions that arise from land use and land-use change in the tropics, opportunities for reducing emissions from deforestation and degradation in developing countries (REDD) have been hotly discussed. It is easy to blame shifting cultivators for forest degradation, and there is a well-founded fear that implementing REDD initiatives may bar farming communities from their resource base.

Linkages among deforestation, development and poverty are complex and context specific. However, the use of fire for clearing land is often blamed as the main culprit of deforestation, while in fact land-use change that does not use fire can cause as much loss of carbon stocks. Banning the use of fire can have significant impact on local livelihoods, with financial benefits not likely to be provided to offset legitimate opportunity costs. If implemented without consideration of local livelihood impacts, REDD can worsen conflict and rural poverty, with the real risk of the increased use of fire as a weapon, negating any environmental gains (Kieft pers. comm.).

8.6 Global economy as the new shifting cultivation

Transient use of resources, skimming off the cream that has slowly accumulated for some time, used to be the basis of agriculture, just as it remains the strategy of a pastoralist migrating with a herd. Shifting places is also a simple way to leave behind parasites and diseases. Culture and the rhythm of life get aligned with the dynamics of changing place. The transient use of resources is a common strategy in the global economy, as flexible outsourcing continuously searches for cheaper resources and labour and the absence of parasites and diseases.

A basic element in human psychology has prepared us for such a way of life, recognizing change as the antithesis of stagnation and death as the ultimate in stability. In condemning shifting cultivation as a primitive way of life, the modern transformation of life simply leads to new forms of shifting cultivation on a broader or even global scale, not to an inherently more stable relationship with our natural resources.

8.7 Dealing with the local dynamics of swiddens

Policies need to balance the need for intervention that follows from the environmental destruction and poverty arguments against interference in local affairs and disrespect for local culture embodied in swiddens.

Overall, the evidence in Indonesia and other parts of Asia suggests a high degree of adaptation in swidden systems to local circumstances, intimate local ecological knowledge, and local regulation of negative impacts and dynamic change. The actual track record in terms of forest and environmental protection of the agencies that try to stop shifting cultivation is not impressive. More modesty in their approach would be appropriate. Better site-specific diagnostics of issues is needed to avoid the standard responses that still characterize much land-use policy. It would help to quantify the local and external benefits from the goods and services derived from the various land-use systems in a mosaic context. Respect for local traditions and support for gradual change are still necessary first steps to improve local policies.
9. Conclusions and recommendations

9.1 Main Findings

<table>
<thead>
<tr>
<th>Main questions and objectives</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assess trends in the extent of swiddening and changes in land cover over past years using readily available remote sensing and map data.</td>
<td>On a national scale, the Richards and Flint (1994) time series may still be the best basis for comparisons, as agroforests and less-managed fallows are still not consistently distinguished in maps broader than the case-study level.</td>
</tr>
<tr>
<td>2. Assess the number of people engaged in swiddening using demographic and economic data from the various countries and inputs from case studies.</td>
<td>In 1980, some 5% of the Indonesian population still engaged directly in swiddening, and for a further 20% swiddening was still part of their livelihood context. A quarter of a century later, swiddens remain relevant for 510 million people, out of the 220 million total, but proper statistical data is lacking.</td>
</tr>
<tr>
<td>3. Assess the impacts of swidden change on the social environment, notably on livelihoods, the economy and culture, using case studies and regional assessments.</td>
<td>The spontaneous intensification and market integration through agroforestry is well embedded in social systems, but current efforts to jumpstart intensive agriculture are not. Substantial differences exist among Sumatra, Kalimantan and Papua.</td>
</tr>
<tr>
<td>4. Assess the impacts of swidden change on the natural environment, notably on landscapes, biodiversity, agrobiodiversity, water resources and global climate, using case studies and regional assessments.</td>
<td>Tree-based intensification is, at least initially, compatible with maintaining biodiversity and significant C stocks, but further intensification leads to the loss of environmental services.</td>
</tr>
<tr>
<td>5. Assess the importance of policy as a driver of change, including a review of commoditization, changes in scale of production, economic policy, land tenure, infrastructure and conservation policies nationally and subregionally.</td>
<td>The primary policy interaction has been with efforts to establish an institutional framework for forest policies with centralized control. This has caused conflicts and intensification on the remaining land. The rural development paradigm has shifted somewhat from targeting intensive food crops to targeting intensive tree crops.</td>
</tr>
<tr>
<td>6. Provide a forum to share and compare the research that has been done on swidden agriculture in Southeast Asia.</td>
<td>The tree crop and agroforest transitions from swiddens in the humid tropics differ from the trajectories in the subhumid tropics, where intensified crop and vegetable production is more prominent.</td>
</tr>
<tr>
<td>7. Bring new ideas and new concepts regarding swidden agriculture management to policy makers in several Southeast Asian countries.</td>
<td>Current knowledge guiding ecological policy is challenged to appreciate the reality of dynamic land-use decisions and may be trapped in less-than-relevant classifications.</td>
</tr>
</tbody>
</table>
9.2 Policy-relevant conclusions

1. Definitions used in the policy arena and the institutional construction of a separate forest domain do not reflect local perceptions of rights, the actual dynamics of land use or the way swidden systems tend to evolve by adding value to the fallow and/or crop phase. A coherent system of land use is artificially split between separate forest and agricultural institutional frameworks. Claims to land by forestry institutions and the transfer of rights to logging and plantation companies trigger change in swiddening communities.

2. The contest for land affects relations between the state and local communities, and between members of the adat community and spontaneous and state-sponsored migrants, and plays a dominant role in decisions about clearing woody vegetation and its replacement with annual and perennial crops.

3. Remote communities’ market integration in Indonesia has historically resulted mostly from modifying the fallow into an agroforest and the further intensification of agroforests into specialized tree crop production systems. It has not been led by changes in the crop phase of the swidden cycle.

4. The current focus on reducing the use of fire does not alleviate long-term ecological concerns over the conversion of natural forest into intensively managed plantations. The loss of diversity in crops and in the ‘wild’ components of agroforests continues, though it is less visible than smoke.

5. The rural development paradigm has switched from jumpstarting intensive permanent cropping to supporting intensive perennial crops, rather than supporting gradual change in accordance with local expectations.

9.3 Recommendations to the policy arena

1. Disentangle the debates about the functional roles of woody vegetation for society (the forest function) and rights to use and modify woody vegetation and use land (forest institutions and governance, the agrarian issue) to achieve more evidence-based public dialogue and improve the transparency of decision making. Create an integrated platform to deal with the forest-agriculture continuum and its policies.

2. Substantially improve capacity to resolve land conflicts based on analyses of historical claims within the existing legal framework, which delegates the management of forests to the Forestry Law and regulates all issues of land rights in a single law.

3. Recognize that restricting the use of forest resources is a double-edged sword. Support the development of markets for forest commodities through basic certification that distinguish domesticated and semi-domesticated resources from the wild resources that require protection. Support the utilization of existing agrobiodiversity.

4. Improve data collection and analysis for more evidence-based policies in support of maintaining environmental services and turning the focus from symptoms like smoke to the underlying causes of the loss of natural capital.

5. Respect local ambitions and expectations in support of sustainable development and critically review current subsidies for monocultures and support for land grabs by external investors or state agencies.
References

Occasional Paper Series

2. Indigenous techniques for assessing and monitoring range resources in East Africa.

3. Caractérisation de la biodiversité ligneuse dans les zones en marge du désert : Manuel de procédures

4. Philippine landcare after nine years: A study on the impacts of agroforestry on commu-nities, farming households, and the local environment in Mindanao

5. Impact of natural resource management technologies: Fertilizer tree fallows in Zambia

9. Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia
Occasional Paper

The Occasional Paper is produced by the World Agroforestry Centre to disseminate research results, reviews and synthesis on key agroforestry topics. The manuscripts published in the series are peer reviewed.

Copies could be obtained by contacting the Communications Unit or from the Centre's web site at www.worldagroforestry.org.